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Leduc-Mills, Benjamin A. (Ph.D., Computer Science)

Embodied Fabrication:

Body-Centric Devices for Novice Designers

Thesis directed by Prof. Michael Eisenberg

We present a class of devices under the umbrella moniker of “embodied fabrication”. These

devices and the development of the term embodied fabrication is rooted not only in computer

science, but in cognitive science, childhood educational theory, emerging digital fabrication tech-

nology, and the convergence of these strands present in the do-it-yourself community known as the

“maker movement”. As such, we operate under a certain set of premises that guide and direct

this work. First, that embodied cognition - which places the body at the center of our cognitive

operations - provides a framework from which to ground our decisions to design physical peripheral

devices as opposed to purely screen-based software. Second, that a strong line of pedagogical re-

search supports providing children with tangible, “manipulative” objects to learn with. Third, that

digital fabrication technologies - 3D printing in particular - provide a wonderful new opportunity

for children and novice designers in general to make, play, and explore creatively - and that the

current design options for 3D printers are not suited to meaningful design and creation of objects

by non-expert 3D modelers. Finally, that by following the best traditions of body-centric inter-

action design for children, devices can be created to provide an educationally and technically rich

environment that connects kids to the creative potential of 3D printing. We unpack these ideas

more in the introduction, followed by an overview of three prototype devices belonging to this class

of “embodied” interfaces, a chapter on related work followed by a chapter on the three user studies

we performed with our devices, a discussion of the presented studies, and finally we present a vision

of the future of this work and of embodied fabrication devices as a whole before concluding.
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Chapter 1

Introduction

Ten years ago, 3-dimensional printing was solely the purview of large fabrication studios

and industrial manufacturing; five years ago the first desktop “homebrew” 3D printers hit the

market, though few people seemed to pay much attention; today, desktop 3D printing is one of

the big headlines at the annual Consumer Electronics Showcase in Las Vegas, media outlets from

Forbes[65] to the Economist[1] are discussing it, and most of the teenagers we talked to during our

user studies know what 3D printing is. 3D printing is part of a forceful trend often referred to as the

“maker movement”[13], that puts do-it-yourself ethics and emerging technology together in a way

that has inspired people the world over to put down the TV remote and pick up a soldering iron. A

subset of this movement has focused on “digital fabrication” technology, of which 3D printers, laser

cutters, CNC mills, and vinyl plotters (among other devices) belong. Digital fabrication machines

take computer-generated files as input and fabricate physical objects from those files. With the help

of the maker movement and visionary works on the upcoming age of “personal fabrication”[58], 3D

printing machines that once cost tens of thousands of dollars are now available as DIY kits for less

than one thousand. Do not misunderstand us - this is a wonderful thing; cost is one, if not the main

barrier to the spread of most technologies. However, the maker movement is not without its blind

spots. Most innovators behind these desktop 3D printers are of a very privileged socioeconomic

background; many of them retired engineers or otherwise possessing technical training far beyond

the average person. For the most part, they have not (nor is it necessarily their responsibility to

have) truly thought about how to make their low-cost 3D printers accessible to the average Joe and
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Sally - much less Joe Jr. - and to be fair, they are not the only actors contributing to the barrier

of entry for 3D novices who wish to design for 3D printers.

For those readers who may be unfamiliar with 3D printing, it is indeed what it sounds like

- an umbrella term for one of several processes capable of creating 3-dimensional objects (usually

fine layers of extruded plastic filament) from digital files, much like a laser printer prints 2D images

on paper. 3D printers primarily take in a file format called stereolithography - or .STL for short.

Normally, to create an .STL file one needs a rather complicated, professional-level piece of 3D-

modeling software, such as Rhino[125] or Solidworks[136]; programs which are rich with features

that only seasoned users will find a need for, with sub-menus upon sub-menus and decidedly

particular behaviors that any novice - especially a young one - would find quite intimidating. As

anyone who has used these software programs knows, one must be very precise and conscious

of every operation for a model to turn out properly - and this order of operations is learned

slowly (often agonizingly) over time. It is a user interface nightmare; hardly the soft of intuitive

environment one might want to learn with. It should be noted that some efforts have been made

to create entry-level 3D modeling software - most notably Google SketchUp[135] - although last

we checked SketchUp did not export directly into .STL format (there are some rather troublesome

looking workarounds however), leaving the average newcomer facing an incredibly steep learning

curve in order to produce any original, 3D-printable objects. We emphasize “original” because

there are several fairly simple ways to download and print out a pre-created .STL file from the

Internet (most notably from the on-line repository Thingiverse[6]).

Although printing out dozens of army men or barnyard animal figurines may be satisfying for

a time, and indeed speaks to the compelling nature of 3D printing, it seems fair to say that children

do not learn much about 3D modeling from a “download and print” paradigm. Herein lies the crux

of the problem - 3D printing offers a wonderfully rich new platform for design, creativity, and

exploration, but neither the 3D printer manufacturers nor the companies who produce the software

necessary to author files suitable for 3D printing have made accessibility for novices a priority.

This is where our journey begins: the desire to democratize 3D printing in a way that empowers
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Figure 1.1: Left: One of the first popular desktop 3D printers, the MakerBot “Cupcake CNC”,
released in 2009. Right: The latest group of MakerBot models, released at the Consumer Electronics
Showcase in January 2014.

newcomers, particularly youngsters, in designing their own objects for 3D printing; engaging them

in such a way that intuitively introduces many of the core concepts of 3D modeling, while helping

to solidify cognitive processes around spatial reasoning and 2D/3D translations, by building a set

of devices that act as a new genus amongst an ecosystem of next-generation digital fabrication

interfaces.

How, then, did we arrive at the term “embodied fabrication” to describe this new genus? The

simple answer, at the risk of over-extending the genealogical metaphor, is that we selected what

we deemed to be the best, most relevant traits from a number of related areas (computer science,

cognitive science, developmental psychology, pedagogical theory, and digital fabrication technology,

amongst others) and attempted to splice them together in such a way as to meaningfully address

the issues with 3D printing outlined above.

We derive the term “embodied” from cognitive science, and the fairly recent advances in

an area known as “embodied cognition”. Embodied cognition posits that our physical bodies and

their interactions with the world are more closely bound to our cognitive processes than previously

thought. Evidence from research in this area (discussed more thoroughly in Chapter 3 on related

work) points to cognitive benefits in basic arithmetic, ratios, proportions, and spatial reasoning -
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all of which are useful (if not essential) tools in 3D modeling, simply by involving the body more

closely in the learning process. This evidence, combined with the simple intuition that learning

the skill of 3-dimensional modeling ought to be done in 3-dimensions as much as possible and not

solely on a 2-dimensional screen, provided the impetus for us to look toward a physical solution

that involves the body more than a typical piece of software.

Physical, or “tangible” user interfaces are nothing new; wooden blocks have been a part

of children’s education in a pedagogical sense since the beginning of kindergarten over 150 years

ago[57]. Montessori “manipulatives” developed in the early part of last century inspired some of

the first attempts at creating physical, computationally-enhanced construction kits for children in

the 1980’s[123]. Tangible user interfaces, or TUIs have been a growing part of human-computer

interaction in a formal way since Hiroshi Ishii’s work on “tangible bits”[76] in the mid 1990’s, and

of course the influence of icons such as Doug Engelbart[49] - one might argue the mouse was the

first “embodied” peripheral for a computer, in the 1960’s - and Mark Weiser[144] (who presaged

many of the devices we take for granted today) as well as many others, should not be overlooked -

we give a more detailed account of this lineage when discussing related work. For us, the longevity,

breadth of applications, and numerous achievements of mediating human-computer interaction

though different physical interfaces further suggests that a tangible user interface, coupled with the

proper software is more than capable of providing an accessible and embodied foundation for our

work.

Taking design principles from the lexicon of tangible user interfaces, adapting them to better

fit an embodied cognition world-view, and focusing on enabling 3D modeling specifically for 3D

printers, we designed and built a suite of functional prototype devices for an embodied mode of

digital fabrication; hence the title of our work. To this end, we present a class of tangible user

interfaces designed to scaffold a child’s ability to design, explore, and play in three dimensions, with

a particular focus on enabling original output for 3D printing. We present three prototype devices

(called UCube, SnapCAD, and PopCAD) as well as piece of companion software that translates

the physical actions performed on the devices into screen-based content in real-time.
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To give a brief preview of our creations; with their hands, users manipulate a device to specify

points (as coordinates in 3-space) that simultaneously display as active dots against a ghosted

3D grid in real-time on a computer. The software on the computer allows for certain modeling

operations on this set of input points (e.g., taking the convex hull, making a path through space),

exporting shapes to stereolithography (.STL) format with the click of a button, the preferred format

for 3D printers, as well as other functionality that we explore more thoroughly in the next chapter.

We propose that these designs form a novel class of embodied input devices aimed at enabling

novice output for digital fabrication machines. Over three separate user studies with 11 to 18

year olds, we investigate the ability for children to use our devices to model a given shape (with

and without the companion software) and to match configurations on our device to a printed 3-

dimensional object (without the aid of the software). In our last study we compare two of our

devices over a multi-session study, while also administering a set of spatial reasoning tasks as a

pre and post test. We video record the subjects (with parental consent) and analyze the gesture

and speech expressions the participants make when explaining a modeling strategy to reproduce a

given object.

Through our studies, we show evidence that our suite of devices can be used effectively by

young adolescents with very minimal instruction, that a wide variety of shapes can be recreated by

the majority of subjects who used our devices, that spatial test scores and modeling performance

tends to improve over multiple sessions with our devices, and that the kinds of gestures produced

while explaining modeling strategy correlates to modeling success on our devices, a finding which

supports prior research on gesture analysis by other authors.

By providing a feedback loop between the bodily interaction with tangible interfaces and

the observed changes in real-time on a computer screen, this body of work presents strong new

motives for the inclusion of embodied cognition in tangible interface design, while tackling the lack

of appropriate tools for novices to create for 3D printers, and evaluating the efficacy of our devices

as modeling tools and as devices for strengthening spatial reasoning and cognition. We continue

in Chapter 2 to present our prototype devices and the software they operate with, explaining the
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evolution of our design choices as well as the technical details behind their operation. Chapter 3

details the lineage of related work, hinted at somewhat in this introduction, drawing connections

between the childhood developmental theories and conceptions of space developed by Piaget and

refined by Papert, the notions of cognitive development and embodied mathematics discussed by

Lakoff and Nuñez, the democratization of digital fabrication technologies discussed by Gershenfeld

and Lipson, and the previous adaptation of these achievements into computer science. Chapter 4 is

devoted to the evaluation of our work, presenting three user studies, their procedures and results.

Chapter 5 delves deeper into the discussions which surround the observations from our studies,

comparing them with prior research, and against each other. Finally, Chapter 6 provides a vision

for immediate future work on our devices, a more expansive vision of the possibilities inherent in

embodied fabrication, and ends with our concluding thoughts.



Chapter 2

Prototype Systems

Over the past several years we have been working on the creation of a family of child-friendly

tangible user interfaces that would serve as input devices for exploring 3D modeling and digital

fabrication in an “embodied” fashion. As discussed in the first chapter, the motivations behind

this work are thematically diverse, but can be distilled as an attempt to create a more intuitive,

body-centric way for novices to design for 3D printing while also strengthening a sense of spatial

translation between 3D and 2D (screen based) representations. To this end, we have created three

prototypes: the UCube, an initial proof-of-concept device using simple components, SnapCAD, a

more expressive and capable iteration of the UCube relying on magnetized LED circuit boards, and

PopCAD - a paper-based interface addressing several of the cost and portability concerns raised by

SnapCAD. These systems all communicate with versions of a companion software program running

on desktop computer. This chapter describes (in chronological order) the development of these

three systems, the software that interfaces with them, the motivations behind their design, and the

technical work involved in their creation.

2.1 UCube

The UCube represents our first attempt to create a cooperative system of hardware and

software that encapsulated and combined our beliefs about embodied cognition and the importance

of accessible digital fabrication. The idea for the UCube originally came from the attempt to create

a “3D Geoboard”. 2.1 shows a rudimentary 2D geoboard consisting of a 3x3 grid of nails stuck
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into a wooden block. Simple geometries, such as the triangle shown in the referenced image, can

be made by stretching rubber bands around some number of “pegs”. The geoboard invites a kind

of tangible, exploratory, and embodied play that (as we discuss in Chapter 3) promotes children’s

learning in powerful ways. The initial design goal was to capture the “gestalt” of the traditional

2-dimensional geoboard and extend it - into 3-dimensions, and with a computationally-enhanced

interface that could translate physical manipulations on a device into a software program that could

display the actions performed on the geoboard in a “meaningful” way - that is, in a way that could

potentially extend spatial reasoning abilities between the 3D representations created on the device

and the 2D, screen-based images displayed on the computer screen. Credit for early work on this

idea is due in part to Julie DiBiase, Yingdan Huang, and Kate Starbird, who outlined the idea of

computationally-enhanced mathematics manipulatives, including the geoboard, in an earlier work

from our lab[45][138].

Figure 2.1: A simple 3x3 geoboard, with a rubber band stretched around several pegs, forming a
triangle.

The UCube (as seen in 2.2) is the initial result of this goal. The physical interface consists of



9

a set of vertical “towers” that are placed (and optionally re-placed) onto a grid of 4x4 evenly spaced

nodes or sockets, which act somewhat like the nails in the 2D geoboard. The towers themselves

contain four switches placed vertically along the tower, creating a potential for 64 (4x4x4) distinct

points to be activated. The towers are “plugged in” when placed into one of the 16 socket nodes,

connecting them to the underlying circuitry responsible for providing power to the towers and

relaying the state of each of the switches to the computer, via an Arduino Mega[99] microcontroller.

Thus, when a tower is placed in a specific node on the board and a switch is flipped on, a particular

(x,y,z) coordinate in three-dimensional space is activated and sent to a piece of software on the

computer. An abstracted illustration of the hardware system is seen on the right in 2.3.

Figure 2.2: Left: The UCube device, with four towers and eight lit switches, representing (in one
instance) the eight vertices of a cube. Right: A detail view of one of the towers placed into the
UCube modeling board with the bottom switch lit.

Figure 2.2 shows two views of the UCube interface. The picture on the left shows the device,

with four towers placed in an evenly spaced square, with two “board units” separating each tower.

The lowest and third-lowest switches on each tower are lit, marking eight active points. Thus we

have eight active points, spaced evenly in such a way to describe a cube of two “board-units” in

length if we were to take the convex hull of those points. The photo on the right gives a detailed
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view of the UCube hardware. A tower has been plugged into the board and its bottom-most switch

turned to the “on” position, indicted by the glow of the LED behind the switch.

The UCube software (discussed more thoroughly later in the chapter) takes the incoming

coordinate data from the microcontroller embedded in the device and translates that data into

a real-time visualization on the computer screen. The graphical user interface centers around a

“ghosted” grid of all the potential points, with the active points highlighted. The software interface

provides a set of operations that can be performed on the set of active points in addition to normal

scene manipulations like zoom and rotate. These functions are explained more thoroughly in the

software section later in the chapter, but we give a brief list here so as to clarify our purposes: taking

the convex hull of the point set (as imagined in 2.2), creating a sequential path or knot through the

active points, exporting the convex hull or knot to .STL format for 3D printing, drawing a (non-

printable) spline through the active points, saving and loading a shape, and editing the vertices of

a convex hull via a click-and-drag interface.

2.1.1 Technical Implementation

The physical system for our first UCube prototype, as outlined earlier, consists of a platform

with a four-by-four grid of potential sites, each of which can hold one tower with four switches, thus

describing a 4x4x4 array of 64 potential points. The platform structure consists of three different

horizontal “layers”. The top (or upper surface) layer is a clear 1/4” acrylic square, into which

a four-by-four grid of circular holes has been laser cut in such a way that the towers fit snugly.

This layer of clear acrylic acts as a brace to hold the towers upright, helps guide the pins from the

tower into alignment with the socket into which they must be placed, and ensures that the towers

themselves are resistant to being knocked over.

The next layer down holds a set of headers, six per socket (one each for power and ground,

and four input lines, one for each switch on the tower), which allow the towers to “plug in” and

connect to the rest of the circuit. Wires from the headers go down to the bottom layer, which holds

the breadboarded circuit and Arduino Mega microcontroller. The header wires connect directly
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to the breadboard, where each switch circuit runs through a 10KΩ resistor, and then to a digital

input pin on the Arduino. When plugged in, the Arduino is able to communicate (via asynchronous

serial communication) the set of active switches (and corresponding coordinates) to the computer

through a USB cable. 2.3 depicts a schematic diagram of the UCube hardware.

Figure 2.3: A schematic illustration of the UCube hardware.

The towers are roughly nine inches tall, made of transparent acrylic, cut from a circular

tube with a 1” interior diameter (1.5” exterior). The towers were laser-cut in order to house the

four switches and corresponding circuitry elements. Four rectangles are laser-cut along the face

of each tower in such a way to allow the back of each switch to be placed inside the tower while

the faceplate remains on the surface. The switches are back-lit (when switched on) with built-in

red LED’s. Each switch has a 270Ω current limiting resistor soldered between two of its legs to

protect the lighting element. Headers were soldered on to the power and ground pins of the switch,

which connect to a strip of silver conductive tape affixed to the back of the inside of the tower

(one can make this out somewhat in Figure 2.2). The signal line from each switch (responsible
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for letting the microcontroller know the switch state, either on or off) is soldered to a wire which

reaches down to a six-pin header at the base of the tower. As the switches are lit when active, it

becomes apparent which points are on as well as giving a more accessible “gestalt” of the shapes

being modeled. The luminosity also allows for some potentially interesting applications in dimly-lit

circumstances, such as modeling constellations in a classroom or planetarium. In these situations,

the lights of the selected spatial points stand out especially vividly.

2.1.2 A Sample UCube Scenario

As a sample scenario, imagine that we wish to create a triangular prism solid employing the

UCube. We can begin this process by selecting three points to form a triangle; then, by placing

two more towers and creating the same triangular shape “shifted over” by two units (as seen on

the left of 2.4) we create the entire prism. Naturally, there might be many alternative pathways to

forming the same eventual shape: for example, we might begin by placing four (or more) towers in

the platform, and then experiment or fiddle with the chosen lights to approach the eventual goal

of creating our prism. Alternatively, we might begin without any towers in the device at all: by

placing our hands or fingers above the device, roughly indicating where the prism should be, we

might then use our imagined locations as “guides”, helping us to place the necessary towers in the

platform and select the correct lights for the vertices of the prism. In any event, having designed

the prism using the UCube platform, and having checked that it looks like the correct shape on the

computer screen (as seen in the center of 2.4), the final step is to export the shape into a format

suitable for 3D printer output. The UCube software, as noted earlier, includes a feature for doing

just this; and finally, we print out the prism, as shown on the right in 2.4.

2.1.3 Limitations

The astute reader will have picked up on some of the more obvious limitations of the early

system: as a three-dimensional modeling device, it is quite limited in the scope of things it can

effectively model, certain geometric shapes are impossible to model on an integer lattice (a do-
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Figure 2.4: Left: The UCube device, with four towers and six lit switches, representing the six
vertices of a triangular prism. Center: An early version of the UCube software, representing the
convex hull formed with the six active points from the picture to the left. Right: The resultant 3D
print, exported from the software to a 3D-printer friendly format.

decahedron, for instance), a 4x4x4 resolution is clearly insufficient for complex shapes, and the

inability to create curved surfaces precludes most “natural” objects (such as human faces) from

being represented in a life-like manner. It is thus important to differentiate this system (and the

others mentioned in this chapter) from a “professional” 3D modeling system; our focus is on ease

of use for novices, to provide a visual and tactile bridge between 2D and 3D worlds, and to provide

a simple way to create shapes suitable for 3D printing. Even so, this does not preclude us from

attempting to make a more powerful, expressive, and stable interface to present to users.

2.2 SnapCAD

Based on the limitations of the UCube mentioned in the previous section, and observations

from the two user studies we performed with the UCube (discussed in chapter 4), we designed

a second, more powerful device named “SnapCAD”. Formerly known as UCube v2, this next

generation interface consists of a total input space of 7x7x7 points, forming 343 distinct coordinates

(as opposed to the 64 points of the UCube). We focused on two main design goals with the

SnapCAD: greater expressive power and greater stability in the system operation.
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2.2.1 Technical Implementation

To start with system stability, then; custom printed circuit boards replace loose wires, the

towers are 11” tall, designed in Rhino[125] and 3D printed in ABS plastic to safely and securely

house the towers, which are in fact printed circuit boards of their own. Instead of a rickety housing,

the top layer is 1/2” acrylic which was milled on a CNC machine to precisely fit the newly designed

towers. The sides and bottom are hand-crafted wood, with channels cut to allow the top and circuit

board layers to easily slide in and out. The frame is not glued on one side to allow for repair and

maintenance. This side is secured by custom metal brackets and screws. Each socket has its own

printed circuit board, held firmly in place by zip ties around a latticed acrylic layer underneath the

boards. The system has since traveled to the Denver Art Museum, the Computer Clubhouse in

Lakewood, Colorado, and ridden around in the back of several cars without mishap (not to mention

roughly 20 hours of user testing by eager adolescents).

Figure 2.5: Left: the SnapCAD interface, showing four towers with two red LEDs each, arranged
in a cube-like configuration (as imagined earlier with the UCube). Right: a detail of the SnapCAD
hardware - the PCB tower is housed in a 3D-printed shell, which plugs into one of a chained set of
shift-register boards. The LED boards snap on to the towers via conductive magnetic snaps.

The goal of greater expressiveness was met in two ways; by increasing the possible input space

from 64 points to 343, and by designing a system that allowed for each point to be activated by more

than one color of LED - effectively allowing for multiple shapes to be modeled at once, or multiple

“players” to interact with the board at once. Both of these solutions required changes in hardware
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and software from the UCube. Working on the scale of multiple hundreds of inputs necessitated

the design of custom circuit boards to relay information effectively to the microcontroller. The

Arduino Mega has only 54 digital input/output pins, far too few to assign each line directly to an

input, even if one wanted to deal with tracking 343 i/o lines (which we most certainly did not).

Instead, we designed a circuit board around an input shift register chip from Texas Instruments

- the CD4021BE - that could effectively provide eight more input lines per chip and operate with

the Arduino’s ATMega 328 Serial Peripheral Interface (SPI) protocol, which requires only three

lines from the Arduino. By breaking out the pins on the CD4021BE so that they could be chained

together (by aligning the serial output of one chip to the serial input of the next chip, while also

passing along the latch and clock signals, the other two lines necessary for the SPI to work)1 .

By arranging 49 of these daisy-chained boards in a 7x7 grid, we had the framework to read in

from 343 inputs in real time. Only one more problem had to be solved: at around 35 connected

shift registers, we exceed what is called the “fan-out” of the Arduino microcontroller - the number

of connected input gates that a given pin on the Arduino to drive a current load into. To get

around this problem, the clock and latch signals are put through a set of two “buffers” - in our

case CD4049BE inverting hex buffers - which can used for logic level conversion (the inverting part,

which we do not need, hence the second inverting buffer), but also as a “boost” to drive the signal

farther. One set of buffers was enough to get our signals to the computer reliably.

This change in scale also meant rewriting most of the modeling software to effectively handle

the greater expressiveness of the physical system. The astute reader may have noticed that while

the CD4021BE adds eight inputs per board, our system calls for a 7x7x7 array - so what were

we to do with the extra input? The dilemma actually ended up solving several problems; in the

UCube firmware each input triggered an (X,Y,Z) coordinate to be send out the serial port - by

switching to shift registers over SPI, we are limited to one character per input - either a 1 or a

0. Normally, a serial string can be delimited in software by looking for certain characters at the

1 We understand this section is somewhat technical. A great introduction to using shift registers in this way can
be found at: http://www.arduino.cc/en/Tutorial/ShiftIn
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beginning or end of a communication, and parsed accordingly, but we only had a string of 343 0’s

and 1’s. Given that most of the sockets would be returning a zero most of the time, by tying the

8th input line high we could count characters and check for a “1” every eighth character to ensure

the serial string was correct - and since we were isolating this character anyway, it was simple to

throw it away afterwards and thus be left with only the sets of seven digits describing the state of

the inputs. The problem of generating the proper coordinates from the input stream was then a

matter of creating a “lookup table” where the nth character in the input string array was the nth

element in an array of 3D coordinates.

Figure 2.6: A schematic of the SnapCAD technical design, showing a sample tower (A), LED light
element (B), shift register board (C) and Arduino (D). The Arduino microcontroller’s role is to
send coordinates (and colors) of the LED lights, once placed, to a desktop computer. A fuller
description of this schematic is provided in the accompanying text.

The other enhancement to the expressive power of the SnapCAD design is the ability to use

each socket in each tower with more than one color of LED. In in order to make this a possibility,

we had to find a way to make the LEDs detachable from the tower and “swap-able” with other

colors. This was achieved by soldering conductive magnetic snaps directly into the circuit boards

themselves; the magnets act to both attach LEDs to the tower, but also to close a circuit and light
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up the LED. We used snaps and not just simple magnets because LEDs are polarized - they have

only one correct orientation - and snaps have a male and female part that could be used to indicate

the correct orientation. This multi-color capability can be seen in Figure 2.7.

This ability to swap out different colors of LEDs not only results in the ability to represent

multiple shapes at once, but for the SnapCAD to become a platform for all manner of multi-

player interactions (e.g. games, puzzles, shape matching contests), with each “player” assigned

a unique color. To this end, we have created a simple “3D Tic-Tac-Toe” implementation on the

SnapCAD, and imagined a sample scenario, explained in the next section. The SnapCAD version

of the software includes this “multi-payer” ability as well as some additional changes that include

supporting multiple but separate convex hulls of different colors, the ability to create and export

shapes created from the minimal spanning tree of a set of input points, and the ability to adjust

the width of the segments in the knot/path and minimal spanning tree modes. The click-and-drag

editing mode includes the knot/sequential path and minimal spanning tree modes as well as the

convex hull mode. We also adjusted the knot-forming algorithm to handle paths that cross or

self-intersect, as well as providing a “close knot” button to complete a circuit in a shape, allowing

for even more kinds of 3D-printable objects.

Figure 2.7: Left: The SnapCAD software showing two convex hulls of different colors. Right: the
SnapCAD software showing a minimal spanning tree model.

A note on the 73 array in SnapCAD: in our user studies with UCube, we noticed that
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users often encountered initial difficulties when required to “find a middle” in the shape they were

attempting to model, given an even number of total grid spaces. For example, to model a pyramid

on on a 4x4x4 grid, one needs to construct a 3x3 subset of the 4x4 grid, using the middle point within

the 3x3 set as the top of the pyramid. This influenced our decision to create an odd-numbered

layout, creating a more “natural” middle point in the hardware.

2.2.2 A Sample (Red/Green Player) Strategy Game for SnapCAD

In this use case, we make use of the two-color capability of the SnapCAD to suggest a

hypothetical game, or genre of game, that could be created with the system. The imagined game

in question is a geometric strategy game between two players, “Red” and “Green”. At the outset

of the game, each player is given four lights of her own color; the two of them are told to place their

lights at the eight corners of a cube in the positions shown in the photograph shown in Figure 2.8

on the upper right.

Now, the computer could display the convex hull of the present set of lights (a cube), as

shown in Figure 2.8 on the upper left; and then (in our scenario) the computer tells the Green

player to move one of her lights to create the new convex hull shown at the bottom-left of Figure

2.8. Thus, the Green player’s job is to change the “cube” hull to the new hull with one move of

one green light. A correct answer to this challenge is shown in the photograph of Figure 2.8 at the

bottom-right; and if the Green player makes this correct move, the Red player is now given the

(current) convex hull and yet another hull that could be created with one move of a red light. In

this fashion, the two players take turns moving lights of their own color to produce a new overall

configuration of lights at every step, until one player fails to solve the current challenge, at which

point the game is over. There are, of course, many variants or extensions of this game that could

be imagined (for instance, a player might be asked to shift two lights, or to add a new additional

light in her color, to create a new convex hull). The purpose of this example is simply to show

that, with the inclusion of two available colors for spatial points with SnapCAD, a sizable potential

landscape of geometric activities and puzzles becomes feasible.
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Figure 2.8: Left: The SnapCAD software showing two convex hulls of different colors. Right: the
SnapCAD software showing a minimal spanning tree model.

2.3 PopCAD

Our motivations for creating a third, alternative interface to the UCube and SnapCAD stem

from the desire to explore this intellectual space more generally; it is far more interesting to discuss

a class of tangible interfaces for scaffolding digital fabrication than it is to discuss a singular

device. To this end, we looked at some of the weaknesses of SnapCAD and towards technologies

we had yet to explore. While SnapCAD can admirably perform a number of modeling tasks, it was

always envisioned as one device amongst an “ecosystem” of next generation fabrication tools. It

has strengths, but obvious weaknesses as well; in particular, the SnapCAD hardware was expensive

to produce, and so would be a difficult proposition for some schools or fab labs to produce or
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purchase; it is also rather unwieldy and unportable - it is moderately heavy, fairly large (over 30

inches square), and has many separate pieces (like the towers and LED boards) that could break

or go missing. Thus, an interface with cheaper and more portable materials was desirable.

To address these issues we chose to build a pop-up book combining traditional paper-

crafts and paper-friendly electronic components such as copper or conductive tape and conduc-

tive inks. In recent years, revolutionary work has been done in combining electronics and paper

crafting[117][100], leading to new techniques and new uses for traditional materials. Paper is inex-

pensive (especially when compared to circuit boards), light, and easily portable, making it an ideal

material choice for a device that would not suffer the same limitations present in the SnapCAD.

Although we often think of “paper” as a rather static material, there are in fact many variations

in the size, weight, color, transparency, and composition of contemporary paper products. We will

cover the two paper-based prototypes we created in this vein, dubbed “PopCAD v1” and “PopCAD

v2”.

2.3.1 PopCAD v1

For the initial prototype, we use a simple construction paper as it provides a balance between

strength and flexibility as well as having a consistency well-suited to laser etching and cutting. The

pop-up book (named PopCAD) has a 3x3x3 array of 27 points which are evenly spaced three inches

apart on a 12” x 18” paper surface. The book folds on a single center crease making the closed

footprint of the book roughly 12” x 9”.

Each tower has a copper tape circuit consisting of three LEDs on the front face and three

corresponding capacitive touch sensors on the left face. The copper tape acts as a paper-friendly

conductive material to connect the electronic components together much like traditional wire, in

the form of a flat copper-based adhesive tape. The LEDs are soldered onto the copper tape for

greater stability. The capacitive sensors are simply a piece of copper tape which is connected to

a pin on a microcontroller - in this first version, an Arduino Mega Pro. By bringing the internal

pull-up resistor connected to the pin “LOW” (to ground) and then timing how long it takes to get
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Figure 2.9: Two views of the first pop-up book prototype, showing the interface in both open and
closed states.

back to a “HIGH” state we can tell if the connection is being influenced by a capacitive force. For

example, if there is no interference on the circuit, the timer will normally only get to 1 before the

resistor is back to a HIGH state; if a finger is placed on the copper tape, the reading will be much

higher (typically around 17). Based on this change, we can detect which switch was touched and

toggle the associated LED on or off. The hollow interior of each paper tower is used to solder thin

30-gauge wire to the copper tape circuit of three LEDs, three switches, and ground. These seven

wires are then soldered to a row of headers that stick through the bottom of the first layer of the

pop-up book. Wires are then run along the backside of the top layer of paper from these headers

to the microcontroller. The entire circuit in then encased in a cloth-covered cardboard binder that

acts as a book cover as well as a means to protect and hide the electronics.

2.3.2 PopCAD v2

Although the first PopCAD iteration was a fully-functional prototype, as we approached user

testing with the PopCAD it became apparent that there were several compelling reasons to iterate

on the original design. Through a few informal user evaluations as well as our own reflections on

the device, we identified several key issues that could be improved upon: (a) the paper engineering

design, (b) the structural integrity of the book as a whole, and (c) the lack of “paper-ness” with
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Figure 2.10: The two PopCAD designs side-by-side: PopCAD v1 (left) uses copper tape and 30
gauge wire for the paper circuit, while PopCAD v2 (right) uses fabric-based conductive tape without
needing any wires. PopCAD v2 also removes the need for large rectangles to be cut out of the paper
tower for the paper strut mechanisms.

respect to the circuitry and electrical components of the design.

To start with the first point above, then: a look at the initial design of the pop-up mecha-

nism reveals the presence of horizontal paper “struts” connecting the towers in the middle column

(along the center crease) to their counterparts on either side. These struts were necessary in order

to generate a pop-up motion from the middle of a book and force each tower upright. The mech-

anism was successful; however, the struts directly interfered with the ability to reach many of the

conductive tape switches. In version two of the PopCAD, the struts were removed in favor of a

pull-tab system whereby each row of towers is raised and lowered by a tab at the front of the row
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Figure 2.11: Two views of PopCADv2 design: with towers raised and LEDs lit (left), and with the
rightmost column of towers laid flat (right).

(the pull tab system can be seen in Figure 2.11).

We were concerned about the overall stability of the first prototype; lights would sometimes

fail to operate properly, the horizontal struts kept breaking, parts of the towers were weak, certain

points in the wiring were weak, and the opening and closing of book (and thus the folding of the

towers) put enough strain on the circuitry that we were concerned whether it would survive a user

study. The second prototype addresses these issues in several ways: first, we use a heavy watercolor

paper (140 weight) for all the paper engineering, making the towers and the pull-tab mechanisms

more resilient to repetitive use. Second, we replace the copper tape, which has a tendency to break

over heavy creases, with conductive fabric tape, which resists repeated creasing much better, and

finally, we made adjustments to lessen the strain on the towers and the circuitry, by minimizing

stress points and reinforcing known weak spots.

In the first prototype, we still used traditional jumper wires from the Arduino to connect to

the headers beneath the towers, and 30 gauge wire (still traditional) inside of the towers to connect
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Figure 2.12: Two views of the conductive tape circuit connecting the paper towers to the Arduino
Mega microntroller. The circuit was constructed by laser cutting a design through conductive tape
(but not through the paper beneath it) and removing the excess material.

from the headers to the LEDs and copper tape. Admittedly, this does not feel very “book-” or

“paper-” like, or in the spirit of faithfully exploring paper-based electronics. PopCAD v2 has no

traditional “wires” at all. Instead, we use a fabric-based conductive tape, which, besides laying

flush (unlike wires) and feeling more like paper than copper tape, the fabric tape is (unlike copper

tape) able to be used in the laser cutter in our lab. Figure 2.12 shows two views of the PopCAD

v2 circuit, constructed by placing strips of the conductive tape on watercolor paper, using a laser

cutter to etch a circuit diagram through the tape (but not through the paper), and peeling away

the excess tape, leaving the desired traces of tape. This technique allows us to create a precise

yet completely flat circuit layout. The accuracy of this method permits the Arduino Pro Mega (a

thinner version of the regular Arduino Mega) to be affixed directly onto the paper. The towers use

this conductive fabric for the capacitive touch sensors as well as material to solder the LEDs to,

eliminating all the standard wires from our design.

The software for the PopCAD retains all the algorithmic capabilities of the SnapCAD version

of the software (convex hull, path, minimal spanning tree), but as the LEDs are affixed to the towers,

we lose the ability for multiple player functions. However, it should be noted that this was in part
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intentional; we did not want any loose parts that could easily break, get lost, or other make the

device less portable. As it stands, the PopCAD (unlike its predecessors) is self-contained as one

piece, is small and light enough to be carried with one hand, and is considerably less expensive

(and less time-consuming) to produce. We offered sample use cases for the previous devices that

involved descriptions of various technical features; for the PopCAD it seems more appropriate to

instead paint a more general user scenario that speaks to the intent behind PopCAD’s design.

Imagine an art teacher, girl scout troop leader, hackerspace or FabLab member, or any number

of educators either wondering how to get into this “3D printing thing” or who have a MakerBot

sitting in a corner gathering dust. They find plans on-line (perhaps on Instructables[74] or some

similar DIY-oriented forum) for a relatively cheap, portable device that they could not only turn

into a group project to build with their kids, but once built would offer a new way to introduce

children to 3D modeling and 3D printing in a completely new way. The democratization of digital

fabrication technology is (as stated earlier) a core goal of this work, and in many ways the PopCAD

is the device that embodies this ideal the most. So while it may be less expressive or powerful in

some ways (though as we point out in later chapters, this can sometimes be an advantage), the

PopCAD does have a place in our suite of devices.

2.4 Software

The software for the aforementioned devices utilizes the serial communication library for

the Processing[115] programming language (essentially a sub-set of Java) to read in the active

coordinates from an Arduino microcontroller; it then displays those coordinates on-screen as larger

points against a “ghosted” grid of grey dots. The exact methods used to achieve this varied

by device, and were detailed in the device-specific sections above. This on-screen model can be

manipulated in a number of ways. Clicking and dragging along any axis rotates the model, as does

the use of the arrow keys on the keyboard. Holding the shift key while performing either action

moves the entire model around the screen (essentially re-centering it). The “control” key plus an

up or down arrow key zooms in or out along the z-axis. In addition to camera movements, there
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are a limited number of functions represented by a simple graphical user interface which aid and

expand the modeling capabilities of the connected device.

For a brief overview of these functions, then: there are three ways of interpreting the active

set of points on the connected device: by taking the convex hull of the input set, by connecting each

point sequentially with a 3D path, and by connecting the set according to a minimal spanning tree

algorithm (more on these modes soon). There is a single “export” button that will take whatever

the active shape is, no matter the mode (if there is one) and generate a stereolithography file

(.STL), the standard file format for 3D printing, although .STL files can also be opened by more

sophisticated 3D modeling software, providing the possibility for the software to be used as a sort

of “sketchpad” for rough ideas or shape that can refined afterwards. There is a “close path” button

which will connect the first and last segments in an open path (e.g. in constructing a square path,

after the fourth point has been placed, there will still be an open side of the square - pressing

this button will complete the square). There is an “edit” mode, whereby the real-time input from

the device is suspended in favor of being able to click-and-drag the active points around with the

mouse. Consequently, there is a reset button, in the case that the user wishes to “snap back”

to the normalized integer lattice. There is also a slider element entitled “path width” that will

dynamically adjust each segment or branch width when in path or tree mode, making the segments

“skinnier” or “fatter”. Finally, two minor aesthetic options - the “wireframe” button will turn off

the “fill” of the shape, showing the outline stroke with a transparent fill, while the “grid” button

will toggle the visibility of the ghosted grid of non-active points.

As a guiding heuristic for our software design, it should be noted that the device software is

intentionally minimal. Our aim is not to produce another sophisticated software modeling program

- there are plenty of good ones available already. Instead, the software is meant to aid the user in

clarifying their physical actions with the physical device, while maintaining a low barrier to entry,

a great possibility of expressiveness, and multiple ways of approaching any given exercise - a trio of

design heuristics often referred to by Resnick (and others) as low floors (accessibility), high ceilings

(expressiveness), and wide walls (multiple paths)[124].
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2.4.1 Modeling Modes

This section will describe the three main modeling modes of the software, with particular

attention to explaining the methods by which they form shapes, the algorithms behind how they

operate, and the modeling domains for which they are particularly suited.

2.4.1.1 Convex Hull: Creating Polyhedral Forms

In observing a set of lights placed on an integer lattice in 3-space, one of the first mental

images we thought of was to take the convex hull of that set and create a solid polyhedral form.

One may think of the 2-dimensional convex hull as the operation performed on the 2D geoboard

mentioned earlier in the chapter; given a randomly scattered set of nails in a board, the convex

hull of those nails will be equivalent to a rubber band that stretched around all the points. That

is, the minimal form that includes all of the line segments connecting each pair of points, as the

rubber band forms a straight line between those nails on the hull as opposed to curving inward

(thus the minimal shape of line segments as opposed to area). In three dimensions, this becomes

a convex polyhedron instead. Many popular 2-dimensional convex hull algorithms originated in

the early 1970’s (e.g. Jarvis March/Gift Wrapping, Graham Scan), while a 3-dimensional solution

was published in 1977[113] and popularized by the same author in the book, Computational

Geometry: An Introduction[114].

The version implemented in our program is a derivative of the work presented in [22], and

adapted from the implementation at [94] which combines a 2D QuickHull Algorithm with a general

dimension Beneath-Beyond Algorithm to achieve a general dimension convex hull solution. In brief,

the strategy works as follows: (a) from a given set of input points, where the coordinates are known,

create an initial 3-simplex (tetrahedron) - from the min/max points in along each dimension (x,y,

and z), and add the four faces of the tetrahedron to the stack, (b) Pop a face from the stack and get

the point most distant to that face, (c) Find all faces adjacent to the selected face, find the horizon

edges of the adjunct faces and extrude the shape along those edges to the selected point. (d) Put
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the newly discovered faces on the stack and repeat from (b) until all points have been accounted

for.

When the hull mode is active in the software, the coordinates on the connected device must

be sent to the hull construction methods each time a point is added or removed to ensure that the

hull remains accurate in real-time. The worst case for this algorithm is Ω(n2), although in practice

is not worse than Ω(n log n). Figure 2.13 shows two screenshots of a “before and after” convex

hull computation in the software in which the picture on the left in simply displaying the active set

of points, while the figure on the right shows the interpretation of those points after clicking the

convex hull button.

Figure 2.13: Two screen views (left and right) of the device software, illustrating the way in which
the software displays the convex hull of a cube. Left: The set of eight input points, before the
“Hull” button has been pressed. Right: The resulting convex hull, forming a cube from the input
points.

Polyhedral forms obviously have a long history not only in modeling, but in geometry (the

Platonic solids), architecture (the Pyramids of Egypt), and numerous other disciplines over the ages

(building blocks, paper crafts, etc.). Though not all the Platonic solids can be modeled naturally

(i.e. without edit mode) on our devices, certainly pyramids can be, as well as other common convex

polyhedral shapes (e.g. a canonical “house” consisting of a cube with a tetrahedron sharing the

cube’s top face). Some examples are shown in Figure 2.14 below.
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Figure 2.14: A collection of 3D printed shapes modeled using the convex hull mode in the software
with the devices mentioned earlier in this chapter.

2.4.1.2 Paths: Creating Linear Forms and Knots

In the convex hull examples in the previous paragraphs, we have not made use of the fact

that the software samples selected points in real time: thus, when a user adds or subtracts a point

in space, that change is registered immediately in the desktop software. What this means is that

the user can exploit not only the overall set of selected points, but can also make use of the order

in which those points are selected. A sequence of selected points need not represent only vertices

of a solid; it can also represent a path over time in 3D space. Figure 2.15 shows several sample

projects based on this idea. Here, the software has been employed to read points as successive

positions of various routes through 3-space. The resulting paths have been printed out on a 3D

printer.

In some cases, the path is closed, finishing at the same location where it started; the path

printed out at center in red in Figure 2.15 is in fact a well-known mathematical form, a trefoil knot.

(It may be worth mentioning here that such a knotted form would be rather tricky to create in

standard 3D modeling software, but the form can be created “by hand” with our devices, selecting

light positions in space along the path of the knot.)

To briefly explain the workings of this mode, then: each point on the device is stored, in
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Figure 2.15: A collection of paths modeled on our devices using the path mode in the software,
exported from the software and 3D printed in our lab. The red shape in the middle may be
recognizable as a traditional trefoil knot.

order, in an array. Once the second point of the path is added (one point a path does not make),

each point is then “exploded” into a cube, centered on the point. The size of each cube is controlled

by the “path width” slider, so the single original point generates 8 points, offset by the current

value of the path width slider (e.g., Point p1 = new Point(x + offset, y + offset, z + offset);). The

algorithm then takes the cube of points associated with each pair of connected points (e.g., points

0 and 1, 1 and 2, 2 and 3, etc.) and runs the convex hull algorithm discussed earlier, generating

a sort of rectangular prism between the two cubes. By connecting each new point to the previous

one, a trail of rectangular prisms is generated between the points specified, in the order in which

the user placed them. Figure 2.16 shows a trefoil knot created with the path mode. By highlighting

the strokes in red, one can see that each point is in fact surrounded by a cube, while each cube is

connected to its neighbors by rectangular prisms.

The utility in creating a mode like path is fairly self-explanatory; it allows for a vast number

of shapes to be modeled, of a wholly different class of objects as the traditional polyhedral style of

the convex hull output. As we will discuss in greater detail later, this method was popular with

children who used it; in some ways it is akin to writing or drawing, albeit in 3D, where once you
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Figure 2.16: A trefoil knot, as modeled on the UCube version of the software. The outlines (strokes)
of the knot have been highlighted in red to show the manner in which the software constructs
the path; points are expanded into cubes, and adjacent pairs of cubes and then connected with
rectangular prisms (the convex hull of two separated cubes).

have a pen on paper, a line will follow wherever you move your hand. The path mode allows for

the creation (or close approximation) of most English letters and numbers, common symbols (like

stars), and 3D outlines of normally 2D geometric shapes, like triangles and rectangles.

2.4.1.3 Points as “Blocks”: Creating Non-Convex Polyhedral Forms

Aside from the convex hull and path operations noted above, the device allows for multiple

different semantics for spatial locations. For example, in the path mode previously mentioned, if we

choose to construct paths with an edge-length of one “interval unit” of the given device - achieved

by putting the software in path mode and setting the “path width” slider to one-half of the distance

between points - each cube created will fit perfectly next to its neighbors, turning each point into a

sort of “block” . In this way, selecting (say) four successive light locations along the length of one

tower, then, one could specify a rectangular prism. Likewise, by selecting three point locations in

an “L” form, one could specify the non-convex polyhedral form seen at the far left of Figure 2.17

below.
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Figure 2.17: A set of non-convex polyhedral forms modeled on the UCube, which constitute the
well-known “Soma Cube” puzzle, shown assembled on the left with the individual shapes laid out
on the right.

This technique for using the path mode has some interesting advantages in terms of the

physical properties of the paths produced in this manner. For those readers interested in recreational

mathematics, the shapes shown in Figure 2.17 will be recognizable as the component pieces of the

“Soma” puzzle; these pieces can be arranged together to form a larger cube (also shown in 2.17).

The software could be employed with any of the devices in similar fashion to produce many such

dissection-type puzzles, building blocks, or other for other domains where interlocking, block-like

shapes may be useful: architectural mockups, model train environments, real-life Tetris, and a

myriad more.

2.4.1.4 Point Clouds: Creating Minimal Spanning Trees

Instead of interpreting points as vertices of a solid (as in the convex hull examples) or as

the successive stations of a temporal path (as in the “path” examples above), we could in fact

simply treat our set of points as just what they are namely, a set of points. Starting with this

interpretation, we might produce a form such as a minimal spanning tree of the set of points (a

set of edges of minimal total length connecting all the points). Figure 2.18 shows several examples

of forms created this way; one immediately grasps the variance and complexity that this mode is
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capable of. The yellow “jack” in the middle of 2.18 is the product of nine points, eight of which

form the equidistant vertices of a cube (or what would form a cube if the software were in convex

hull mode), with the last point perfectly centered in the middle, effectively “bending” the rest of

the graph segments in to meet it.

Figure 2.18: Several examples of models produced using the minimal spanning tree mode in our
software, exported, and printed out on a 3D printer.

As with the convex hull, the minimum spanning tree is a well-defined, extensively studied

algorithm in computer science and mathematics. Given a set of points on a graph, the minimal

spanning tree will be a solution (possibly more than one) that connects each point on the graph,

without cycles (returning to a point already in the tree), and with the minimal possible value of

some “cost” variable, often defined as the sum of “weights” of the connected edges in the tree. One

may think of the minimal spanning tree like constructing a subway system, where all the stations

need to connect and the length of track should be minimized to keep construction costs as low as

possible.

The first algorithm for finding the minimum spanning tree was derived by a Czech scientist,

Otakar Bor̊uvka in the late 1920’s[27], for the purpose of planning electric distribution networks.

There are two popular algorithms used today, Prim’s and Kruskal’s both of which are considered

“greedy” (by iteratively choosing the locally optimal edge to determine the spanning tree) and



34

run in polynomial time. Our software uses an implementation of Kruskal’s algorithm, whereby

Euclidean distance between two points on the graph is used as that connecting edge’s weight.

Kruskal’s algorithm, first described in 1956[86], starts by taking a set of each vertex (thought of as

separate trees) and a set of all the possible edges in the graph (with their corresponding weights),

then iteratively removes the edge with the lowest weight from the set of edges and adds it to the set

of vertices, connecting two of these trees into one, until there is only one tree left from the original

set of vertices (or we run out of edges to pull from). If there is only one tree left in the vertex set,

then that tree represents the minimal spanning tree. It is, of course, possible to have more than

one minimal spanning tree for a given graph however.

In our software, we run Kruskal’s algorithm whenever a point is added or removed in “tree”

mode. The set of points is sent as inputs, the edges and edge distances are calculated, the algorithm

is run, and returns a list of connected edges, the set of which is the minimal spanning tree. This

list of edges is treated in much the same way as the points in “path” mode: each edge has two

point coordinates, both of which are “exploded” into cubes centered on the point, and then the

set of two cubes (16 points) are sent to the convex hull algorithm, creating a 3D rectangular prism

between the two cubes.

Including the minimal spanning tree mode is an interesting departure from the convex hull

and path modes; it is not easily explained to the novice designer, nor does it have the sort of

intuitive relationship to the set of active lights as the other modes do. The addition or subtraction

of a single point can radically alter the resultant spanning tree in (sometimes) unexpected ways -

not so with the convex hull or path modes. However, it is this lack of immediate understanding

and the element of unexpectedness that makes this mode a good fit for the kind of devices we

make. The real-time adjustments of the software in combination with the exploratory nature of

the devices makes the tree mode highly engaging (in our observations, explained in full later on).

The ability to quickly add or remove points from the graph is a feature unique to our devices and

allows for a quick way to “check and see” different combinations of points and strategies, while

being able to look between the device and the software and start to draw some conclusions about
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how their actions affect the shapes being displayed.

2.4.2 Other Software Functionality

The software modeling modes mentioned in the last section set the stage for the types of

figures that can be constructed with our devices, the software has additional features that are crucial

to the overall purpose of the system. This section will go over the operation and methodology of

the most important of those: the software’s “Edit” mode and the “Export” feature, allowing figures

to be saved in a 3D-printer friendly format.

2.4.2.1 Edit Mode

In order to (partially) address the “inflexibility” inherent in having points and thus shapes

confined to the integer lattice, we developed a way in the software to “edit” the points by putting

the software into a special mode that freezes the serial input from the connected device and allows

the user to click-and-drag points off their “hardware defined” locations. The edit mode affects all

three of the modeling modes mentioned above, so the user can how the edits they make change

each modeling algorithm. We also provide a “reset” button as a way to “snap” back to the original

grid of points.

The mode works by combining several pieces of functionality that work together to keep track

of the cursor position (to detect if it is hovering over a point) and its click-state, track the relative

position of the point as it is being moved, and relay that position information to the data structures

responsible for the different modeling modes - all in real time.

Figure 2.19 shows a four-step sequence of screen shots using the edit mode to alter a shape:

(upper left) six points have been lighted on the PopCAD and are reflected as simple points in the

software; (upper right) the user has selected “tree” mode, taking the minimal spanning tree of the

six points, forming a sort of “H” pattern; (lower left) the user selects the “edit mode” button,

freezing the serial input and initiating the click-and-drag editing ability; (lower right) the user has

dragged each of the four “corner” points outward, altering the original shape into something new,
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Figure 2.19: A four step sequence showing the operation of the edit mode: (upper left) six unaltered
points; (upper right) the points form an “H” shape with tree mode selected; (lower left) the selection
of edit mode; (lower right) the edited shape, with the corners of the original shape extended outward.

impossible to model using only the “raw” points available on the device.

2.4.2.2 Stereolithography Export

One of the most important functions of the software is to make a user’s creations into easily

3D-printable shapes. Many complex 3D software programs allow for export into sterolithography

format (.STL), which is the common input format for 3D printer software programs, however, these

programs rarely check to ensure that the produced file will actually be printable; many “model-

able” shapes will cause errors in 3D printer software - lines, 2D shapes, shapes within shapes,

shapes with gaps between faces - and on and on. Our software also exports into .STL format, but

takes great pains to ensure that any exported file will print without error.

The export function in our software deals with models formed from all three modes simply

by keeping track of the active mode and choosing the correct export method accordingly. The

export process is similar for each type of shape: since each shape is actually constructed of one
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or more convex hulls, the array of 3D vectors describing (in order) each triangulated face of the

hull (or hulls) is added to a triangle mesh, which takes in all the faces, flips the Y axis values for

each coordinate (because in the Processing environment, (0,0) is in the upper left), flips the vertex

order, which corrects problems with sliceform errors (in 3D printing software) resulting from the

face normal vectors facing the wrong way, then adds all the faces to an .STL object, which outputs

a series of triangles in an .STL file the describes the object.

Figure 2.20: Several of the shapes modeled on the PopCAD and SnapCAD devices by novice
designers (most of them without any previous 3D modeling expertise) from one of the user studies
we performed.

Creating a “novice-proof” stereolithography export (all of the above computation happens

with one click, even the file naming) is crucial to the raison d’être of our work - to democratize

the process of designing meaningful, personalized objects for 3D printing by novice designers. See

Figure 2.20 for a glimpse of what these novice designers are capable of (more to come in later

chapters).



Chapter 3

Related Work

The notion of “embodied fabrication” as we have defined it earlier is only cogent given the

many philosophical and technological achievements that have helped bring our ideas into being.

This chapter is devoted to recounting those accomplishments as they weave through the history

of childhood education, developmental psychology, computer science, cognitive science, and digital

fabrication to form the foundations upon which our work rests.

The belief that tangible objects1 play an important role in children’s education is relatively

recent (given the history of human education). Friedrich Froebel’s use of 20 wooden forms he

dubbed “gifts” in the first Kindergarten was in 1837[57]. It took until 1907 before an extension of

Froebel’s ideas and a focus on physical, manipulative objects and tasks was implemented by Maria

Montessori in the first Casa Dei Bambini[103]. The interest in children’s learning methodologies in-

corporating the use of manipulatives progressed steadily, most notably by Jean Piaget and his work

on “genetic epistemology”. Piaget wrote extensively on the stages of development during which cer-

tain kinds of knowledge emerged[73], including logical-mathematical knowledge related to the kind

we wish to foster. Additionally, by using our devices as an assessment vehicle for children’s spatial

reasoning, one can position our work as part of a tradition (dating back at least to Piaget [112]) in

understanding spatial thinking and its development (cf. also [108] for a more recent treatment of

the subject). While Piaget’s specific theories have been challenged[137][121], his influence was (and

1 It is worth noting the difference in this work between “tangible objects” of the sort that a child might play
with (e.g. Lego) and “tangible user interfaces” (TUIs) that a child might interact with - typically a peripheral device
(apart from the keyboard and mouse) that communicates physical interactions to a computer.
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still is) extremely important. Seymour Papert, one of Piaget’s intellectual descendants, published

Mindstorms[110] in 1980 and with it introduced his own ideas about constructivism. Combined

with the advent of the physical Logo turtle, Papert brought many constructivist ideas into the

modern age and opened the door for a technical and cognitive exploration of how computation

and interactive objects could be combined to examine the link between tangibles and children’s

learning.

While a rich and diverse lineage of tangible and embedded user interfaces has progressed

since (and partially because of) Papert, the genealogy of this work derives from an interest not

only in constructivist-like activities, but in theories about how interaction with physical objects

may be beneficial to learning. In cognitive science, the area of embodied cognition examines the

ways in which our interactions with the physical world shape our cognitive experiences from a body-

centric point of view. More specifically, embodied cognition holds that our cognitive processes are

“deeply rooted in the body’s interactions with the world”[149]. This is in stark contrast to decades

of research in cognitive science wherein the mind was viewed as a sort of central but detached

information processing unit where motor-sensory functions were more-or-less secondary inputs and

outputs to a main system[38].

Although there are several different tenets of this body-centric view, the primary conclusion

relevant to our work is that interactions with physical objects can shape, clarify, and reinforce our

cognitive processes in scores of disparate areas. Of keen interest for this work in particular is a

domain referred to as embodied mathematics. Lakoff and Nuñez[87] give a fascinating (although

not unchallenged - see Voorhees[141] for a good critical discussion) account of the origins of mathe-

matics from an embodied point of view. They propose that humans, by virtue of their interactions

with the physical world, inevitably form certain intuitions of a mathematical nature. Recognizing

small numbers of objects (e.g. the pre-verbal ability to do arithmetic with less than five objects),

estimation, and simple comparisons are a few of the examples given in[87]. From these basics,

they argue that four kinds of physical operations (object collection, object construction, using a

measuring stick, and movement along a path) form the basis of simple arithmetic. Lakoff and
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Nuñez postulate about concepts as ungrounded and seemingly abstract as infinity, although for our

work it is enough to suggest that the user interactions present in our designs follow from these four

operations and may in fact contribute to the solidification of more complex mathematical ideas in

spatial reasoning, 3D modeling, and digital fabrication - for example by forming correct mental

models of 3-dimensional objects.

Such notions of embodied mathematics have even before the Lakoff/Nuñez text played a role

in discussions of the development or instruction of mathematical ideas. The link between physical

experience and mathematical growth was a strong element, again, in Montessori’s work (see, e.g.,

[64]); much of the motivation behind traditional mathematical “manipulatives” such as number

rods and balance beams can also be traced to this intellectual tradition. More recently, theoretical

discussions of embodied cognition have given rise to fine-grained observations of the connections

between bodily activity and mathematical learning: Goldin-Meadow[61], for instance, describes a

fascinating line of research in which children’s nonverbal gestures appear to both reflect and, in

some cases, anticipate their verbal understanding of concepts such as conservation and “inverse

operations”. In other work, Ehrlich, Levine and Goldin-Meadow show that through an analysis

of hand gestures, one is not only able to predict a subject’s “readiness” to learn mathematical

concepts[60] but that the kinds of gestures children make (those relating to movement, for example)

are correlated with spatial reasoning ability[41] and performance on mental transformation tasks.

In fact, we borrow heavily from several of the study designs implemented by Ehrlich and Levine in

our own work, especially the last study in Chapter 4 with the PopCAD and SnapCAD devices.

Pedagogical research in embodied mathematics has proceeded hand-in-hand with the de-

velopment of desktop, embedded, and portable technological artifacts to support the link between

bodily actions and mathematical conceptualization. Papert’s discussions of the Logo computer lan-

guage [110] reveal this connection early in the history of children’s computing: Papert discussed,

for example, the way in which the program for a Logo circle resonated with children’s bodily un-

derstanding of moving in a circular path. More recently, Nemirovsky et al.[107] describe the use

of a computer-based motion detector system to assist children in the development of intuitions
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behind graphing; Howison et al. [68] used a device based on a Nintendo Wii remote to assess

children’s understanding of ratio (the children attempt to move their arms in a manner illustrating

a target ratio); Bakker et al.[21] created a collection of handheld objects (“MoSo Tangibles”) with

embedded sensors to help children learn about musical ideas via hand motions such as waving,

squeezing (pressing hands together), and shaking up and down, among others; Mickelson and Ju

[102] use sophisticated video and projection equipment as the basis of activities through which chil-

dren can learn about mathematical ideas (e.g., symmetry, rotation angles) via large-scale physical

movements.

In their section on ‘Thinking Through Doing’, Klemmer et al.[83] give a particularly poignant

summary of why we ought to consider the body as instrumental in any human-computer interac-

tion design, stepping through many of the concepts outlined above. In fact, the marriage of ideas

derived from Papert’s work with the conclusions of embodied cognition are not new, and ap-

pear to substantiate our motivations to produce tangible, manipulative interfaces as opposed to

purely 2-dimensional screen-based work. In the mid-to-late 1990’s, research examining the ways

in which physical objects might be infused with computational ability started to coalesce around

several themes[47]. Resnick’s work with “digital manipulatives”[123][153] specifically references the

contributions of Froebel and Montessori in the design of a series of “programmable bricks” with

computational ability whose aim is to make certain specific concepts (e.g. systems-level thinking)

more salient for the user. Ishii’s work on breaking down the divide between physical and virtual

worlds into “tangible bits”[76][75] has subsequently set the stage for a new family of tangible in-

terface designs that support the kind of embodied interactions that our work seeks to produce.

By constructing environments and artifacts that focus on the possible physical representations of

computational components, these works (among others) created the philosophical space to delve

into how tangible objects might affect users at a cognitive level. Our work is a confluence of both

tangible and cognitive design; as Resnick states, “We are interested in Things That Think only if

they also serve as Things To Think With”[123].

Having shown several PopCAD prototypes in Chapter 2 representative of a “renaissance”
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in papercrafting by infusing it with electronics, it is worth situating that work in relation to that

of other researchers in this (still embryonic) field. The blending of traditional papercrafts with

emerging technology is in fact still a relatively novel technique, but there is a remarkable community

of researchers beginning to explore this area. For us, a special debt is owed to Leah Buechley’s

High-Low Technology group at the MIT Media Lab; that group first (to our knowledge) introduced

conductive ink and copper tape into paper-based projects. Early (c. 2008) use of conductive ink

with microcontrollers on a paper substrate can be found in [35] and [46] with the development

of paper-based Arduino processors and simple electronic components (e.g. LEDs, toy motors,

switches) that could be placed onto conductive paint to form an electronic connection. This work

culminated with a paper application usually reserved for home remodeling: a “living wallpaper”[36]

where passers-by could trigger light, movement, and sound by interacting with different parts of

the surface (see Figure 3.1).

Figure 3.1: Examples of paper-based electronics: Electric Popables (left) is a pop-up book infused
with a variety of paper-friendly electronics. The Living Wall (right) is a complete interactive
environment embedded in wallpaper, reacting with light, sound, and movement.

These early efforts in turn spawned developments that further refined the expressive poten-

tial of paper-based electronics, infusing traditional papercrafts with new elements and abilities.

An electronic pop-up book by Qi and Buechley[117] re-imagined the traditional pop-up by infus-

ing each page with paper-friendly, interactive circuitry (e.g. by using a copper tape circuit to
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power LEDs in a pop-up cityscape), and from which PopCAD certainly owes some debt. Other

projects in this vein include techniques to animate origami structures through shape-memory al-

loy (SMA)[118], using SMAs in the design and fabrication of printable paper-based devices (e.g.

speakers and lamps)[127], storytelling and craft-making through electronically-enhanced storybooks

and workshops [77][37][139] and the use of small microcontrollers incorporated into programmable

paper-based sculptures[100].

These efforts have focused on the creation of compelling (either electronically or digitally

enhanced) papercrafts. There are numerous technological developments that, in combination, serve

to accelerate the development of paper mechatronics. For instance, Kawahara et al.[82] describe

how inkjet-ready conductive ink can allow circuits to be printed easily and directly onto paper;

and Koizumi et al.[84] present a toolkit for wireless control of movable paper toys, Zhu et al.[151]

describe a method for wireless power transfer for paper computing, and Coelho et al.[39] have

achieved the direct embedding of conductive components during the papermaking process.

Of particular interest for the current work are explorations focusing on 3D modeling and

perception with tangible interfaces. Prime examples include software that allows for 3D shapes

to be flattened into paper-printable, origami-esque polyhedra[48], a construction kit with kinetic

memory so as to record and playback certain user-generated manipulations[120], as well as several

variations of “smart-cube” interfaces [143][129] that encourage spatial and logical reasoning in order

to make use of the computational aspects of the cubes. While diverse in their implementation, these

kits point to ways in which interface design can tease out the kind of 3-dimensional problem-solving

and exploration present in the proposed work.

Related contributions focus more on the cognitive processes involved when exploring embod-

ied interfaces with children. Research on supporting creative problem solving with children[26],

arguing for a kindergarten-influenced approach to creative thinking[122], embodied approaches to

analyzing children’s interactions with smart objects[15], as well as the embodied design of interfaces

for introducing mathematical concepts to kids[11] have shown a great degree of correlation between

physical interaction and learning in children.



44

Figure 3.2: Left: The ActiveCube system. Right: The Roblocks system.

Yet so far, there have been few attempts to design embodied interfaces for children that

specifically address the growing presence and availability of digital fabrication tools. KidCAD[55],

a deformable pad that captures the 2.5D geometry of depressions made on the underside of the

surface, was a very promising idea in that it allowed very young children to take small objects from

their surroundings (or their hands) and “stamp” them into the pad - an intuitive and satisfying ex-

perience. Unfortunately, the authors intentions to be able to output the geometry to 3D printers has

not yet manifested. Easigami[70] is a set of interchangeable and interlocking polyhedral faces with

smart “hinges” that can reproduce the morphology of a set of connected faces while connected to a

computer. In contrast, Easigami is able to export this morphology to a stereolithography file ready

for 3D printing. There are several other interfaces that deal with “interactive fabrication”[148];

devices that manipulate materials interactively based on various input from a user, such as con-

trolling a laser cutter with a laser pointer (instead of through a CAD program)[106], or a wearable

device that takes in a CAD file and provides haptic feedback to make the physical creation of the

device by hand easier, even for a non-fabricator[152]. These projects, as well as several others that

deal specifically with digital fabrication for laser cutting[78][147], are examples of the subset of

tangible interfaces to which this work belongs - namely, those concerned with providing a means to

engage with digital fabrication technologies in a more intuitive, embodied fashion. However, with

the exception of KidCAD and Easigami these designs are not made with children in mind, nor

do they cover the range of possibilities for child-friendly input devices that focus on 3D-printing.
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Figure 3.3: Examples of interactive fabrication interfaces: Constructable (left) allows users to
control a laser cutter with a set of physical tools as opposed to a pre-defined design file. Shaper
(right), and interactive fabrication tool using expanding polyurethane foam.

Therefore we argue that there is room for novice-oriented designs such as the devices described

in this thesis, as well as a pre-existing lineage that suggests meaningful results may follow from

continuing to explore the incorporation of tangible interfaces with embodied design.

We see our devices as part of a larger, burgeoning “technological ecosystem” around the

democratization of three-dimensional printing (and new fabrication technologies more generally).

The introduction chapter to this work noted several prominent researchers who argue for democ-

ratization of these technologies, and for its applications to education. Indeed, exciting early work

has been done in applying 3D printing to education in fields such as architecture [29], solid ge-

ometry [66], and mechanical design [93]. Our devices are designed so that they can be employed

by younger students our studies focused primarily on middle-school aged children (11-14) - who

are certainly less skilled or experienced with traditional 3D modeling software than the average

engineer or architecture student. The devices we present are meant to enable children to specify

and identify three-dimensional shapes by hand motions (instead of, by contrast, using symbolic

commands directed at a two-dimensional screen display). At the same time, they are not simply

devices for mathematical instruction, nor even a general tool for mathematical design - but as a

suite of experiential, embodied interfaces for engaging youth in a variety of spatial design activities
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Figure 3.4: Left: The KidCAD interface showing a model Zebra and its 2.5D impression on screen.
Right: The Easigami system, showing a series of connected polygonal faces with smart-hinges and
embedded electronics.

aimed not only at learning but at democratizing authorship for 3D printing as well.



Chapter 4

Evaluation

This chapter is devoted to the description and discussion of three separate user studies with

the devices introduced in Chapter 2. Two studies were performed with the original UCube device

(one more informal than the other), while a longer, more detailed study involved both the SnapCAD

and PopCAD systems. We present the procedure, results, and basic observations of each study in

this chapter, and discuss the results more thoroughly in the next chapter.

4.1 UCube Pilot

Early in 2011, shortly after the UCube prototype was complete, we conducted an initial (and

informal) pilot study with the UCube. Our participants were a group of 12-14 year old middle school

children from a local middle school multimedia class. We had fourteen participants (predominantly

Caucasian), consisting of five girls and nine boys, who were divided into six groups (five groups of

two, one group of four).

4.1.1 Procedure

Participants were asked to model a sequence of five shapes of increasing complexity using

the UCube along with the companion software. The target shapes were displayed on one half of a

computer screen, while the UCube software showing the live model was displayed on the other half

(as in 4.1). The first shape that participants were asked to model was a straight vertical line; after

this, the requested shapes were a diagonal line, a cube, a triangular prism, and finally an irregular
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polyhedral object. No shape required more than four towers to complete, and shapes were always

presented in the same order.

Figure 4.1: A screenshot of the testing setup, with the live output from the UCube on the right
and the target shape on the left.

Participants were instructed to place the tower on the board (but not shown how), and were

told that the software model could be rotated and filled in using the keyboard and mouse, should

that help them complete the task. The participants were not given any hints as to how to complete

the shapes and were not told when they had the correct configuration (they had to indicate their

belief that the model was done). Participants were also instructed to “think aloud” about their

actions. The main purpose of the pilot study was to get an initial impression of how the UCube

would act as an accessible 3D modeling tool - how well it could help “3D novices” overcome the

“2D bottleneck”.

4.1.2 Results and Observations

Of the six groups who participated, four groups successfully modeled all five shapes, one

group ran out of time after three shapes, and one group finished one shape, for a total of 24 of

30 possible shapes, or 80%. Sessions lasted between 17 and 30 minutes. A variety of problem-

solving strategies were observed during testing, as the participants tended to treat the exercise
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as a sort of puzzle to be solved. Simple methods equivalent to “try and see” were common, and

seemed to serve as a base point from which to draw conclusions about the relationship between

the 3D model and 2D on-screen representation (e.g. “No, not there, up one”). More sophisticated

strategies were also observed: “deconstructing” more complex shapes into smaller, easier-to-model

shapes (e.g. thinking of one side of a cube as a square) was observed from several groups. Another

popular technique was to systematically match the on-screen perspective from the live model with

the shape they were attempting to model (e.g. “Okay, first let’s do the top view, and then go from

the side”). By orienting the two models similarly, participants were able to make more accurate

modeling decisions as well as check their model against the on-screen shape. Counting distance

in terms of spaces on the board, between switches, or between dots on the screen was also a very

common technique of reasoning about and describing position. For example, by counting that two

vertices of a shape were separated by “two dots over and one down” on the screen, subjects were

able to count the distance out on the physical UCube board. A few of the more mathematically-

advanced participants used terms such as “axis” and “origin” to orient themselves and describe

various positions on the board to their partners. Another revealing observation in the pilot study

was that, in the few instances of mechanical failure (certain switches not lighting up, towers not

plugging in properly, or points not showing up on screen) the participants were still able (with a

high degree of certainty) to complete the assigned tasks. This appears to indicate that, as opposed

to arbitrarily moving the towers around until the two sides of the computer screen looked the same,

participants had formed a more substantial mental model of the relationship between the UCube

interface and the 2D representations on the screen. That opens the possibility that by performing

the embodied interactions necessary to operate the UCube, participants had actually strengthened

their understanding of how 3-dimensional space is typically represented on a 2D screen. Although a

small, informal study on its own, this finding would strengthen the argument for using the UCube

in an educational setting to improve understanding of 3D space, as well as providing a gateway for

youngsters to move on to more complex modeling software. While the variety of problem-solving

techniques we witnessed is a testament to the participants’ ingenuity, it is also indicative of the fact
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that parts of the UCube are not immediately intuitive. While none of the participants had trouble

understanding how to place the towers on the platform, the positions of the towers and switches

had to be reasoned out explicitly. It was common for groups to clear the board of any poles when

starting a new shape, even in cases where an overlap of points or tower positions existed. Although

most groups completed all the shapes (or ran out of time), there were some expressions along the

way of the difficulty of the task (e.g. “This is hard”, or “This is like a puzzle”). This indicates

that design changes can be made in future iterations to help clarify the correspondence between

positions on the UCube platform and the on-screen representation; for example, labeling the both

the physical and software grid with a simple alphanumeric system. Despite these drawbacks as well

as the inherent limitations of the UCube design, these early results indicate a promising ability

of youngsters to effectively engage with the UCube interface. In fact, despite various levels of

success in completing the assigned tasks, the vast majority of participants exhibited a high level

of engagement with the UCube. For example, although the group that completed only one shape

seemed unmotivated to attempt to model the other shapes, they continued to play with the interface

and observe the results, even stating “this is fun” and “I like the switches”. Participants also saw

potential uses for the UCube outside of the specific exercise we assigned. Comments (unsolicited)

included, “you should use this to teach geometry” and “you could make this a puzzle game”. At

the very least, these early results indicate that the majority of participants were able to take a 2-

dimensional representation on the screen and model its 3-dimensional equivalent using the UCube,

a very encouraging result in our eyes, prompting refinement of the UCube software and hardware

as well as further user study, as we explain below.

4.2 Further UCube Study

Early in 2012, we conducted an IRB approved follow-up user study of the UCube with a

group of 11-13 year olds. The group consisted of ten participants, eight boys and two girls, from a

local middle school multimedia class. Each participant was individually led through two separate

exercises (outlined below) using the UCube.
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4.2.1 Procedure: Modeling

Participants were handed a 3D-printed shape (modeled and printed from the UCube) and

were instructed to attempt to model the shape using the UCube. The participant was initially

allowed to hold the shape for approximately 10 seconds, after which they would hand the shape

back to the facilitator and attempt to model the shape from memory. Participants were instructed

that they may ask to hold the shape again, at which point they were allowed to hold it throughout

the duration of the modeling task. Additionally, users were instructed that they had the option to

skip a shape and return to it at a later point in the exercise. The five physical shapes presented

were: a cube, a tetrahedron, a diamond, a “house” (a cube with a pyramid on top), and a complex

irregular polyhedron. The models were presented to the user starting with the cube (as this was

deemed to be the most basic shape with regard to modeling complexity). To avoid an ordering

bias, we randomized the presentation sequence of the next four shapes using an online random

order generator. If, after skipping a shape and returning to it, the participant was still having

difficulty, we offered them the opportunity to attempt modeling the shape with the help of the

UCube software, the effects of which are discussed in the results section. Participants were given

a total of 25 minutes for the modeling exercise. We recorded, but did not limit the modeling time

per shape, only the total time for all five shapes.

4.2.2 Procedure: Matching

Participants were instructed to face away from the UCube while the facilitator modeled a

set of lights on the UCube corresponding to one shape among a set of physical models laid out

on the table next to the UCube. Once the lights on the UCube were set up, the participant

was instructed to turn around, and indicate which physical object they thought the set of lights

on the UCube corresponded to. There were nine physical models presented on the table, and

consisted of a cube, a tetrahedron, the “house” shape, a diamond, a triangular prism, an elongated

hexagon, a parallelogram, a trapezoid, and an irregular polyhedron (see 4.2 for a picture of all the
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models). The shapes were always presented on the table in the same order and orientation to avoid

discrepancies in perception or association. Of the nine shapes, the participants were asked to match

five of them (the cube, the triangular prism, the parallelogram, the elongated hexagon, and the

trapezoid). Thus, only the cube was presented in both the matching and modeling exercises. As

with the modeling exercise, the cube was presented first, with the remaining four shapes presented

in a computer-generated randomized order. Participants were given a total of ten minutes for the

matching exercise, corresponding to two minutes per shape, and were instructed to think aloud

during the process.

Figure 4.2: The nine models used during the user study: a diamond, trapezoid, parallelogram,
cube, elongated hexagon, irregular polyhedron, triangular prism, tetrahedron, house.

4.2.3 Results

While many established forms of 3D modeling systems can be confounding and operationally

too complex for a child to navigate, the UCube was positively received and system instruction was

accomplished with just a minor introduction and demonstration (system instruction and demon-

stration lasted approximately 2-3 minutes). We found this first instance of system comprehension
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to offer some validation that the UCube worked well as a user-friendly 3D modeling device. This

section will detail the outcome of both the modeling and matching tasks performed.

4.2.3.1 Exercise 1: Modeling

Modeling occurred under three conditions: recreate the object from memory, construction

of the object while it was in the participants possession, and modeling the shape with the help

of the UCube software. Overall, 21 of 50 shapes were completed from memory, 12 of 50 were

completed while holding the shape, and a further 8 of 50 were completed with the aid of the UCube

software, for a total of 41 out of 50 shapes modeled successfully (82%). Of the nine missed shapes,

seven were of the same shape, the complex polyhedron. The remaining two misses were from the

same participant, who ran out of time before completion. Of the ten participants, eight were able

to recreate the cube from memory, whereas only four were able to recreate the diamond and the

tetrahedron from memory. Half of the participants constructed the house from memory, and no

participants were able to complete the irregular polyhedron from memory. However, once shown the

software the majority of the participants found the modeling task significantly easier to perform.

The irregular polyhedron was by far the hardest shape and was only able to be completed by three

of the ten participants either after continued possession of the shape or using the software.

Figure 4.3: Results of the modeling task, showing total modeling time spent per participant (left)
and average modeling time spent per shape across participants (right).

The graphs in Figure 4.3 represent the total completion times per participant (on the left) and
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average time per shape (right). Two exceptional completion times were observed, where participants

finished modeling all the shapes in under 10 minutes. However, the majority of participants finished

the task in the 19-25 minute range. Only one of the participants ran out of time. Once participants

had been introduced to the software, 9 of 10 of participants were able to complete all but the

irregular polyhedron. It is interesting to note that of the 10 participants, the child that had the

most difficult time modeling, the lowest shape completion rate, and the longest completion time

during the matching exercise was the youngest participant.

4.2.3.2 Exercise 2: Matching

Out of 50 matching tasks (five per participant), all but three tasks were completed in 20

seconds or less. Figure 4.4 displays the total time spent on the matching task per participant (left)

and the average completion times for each shape (right). No participant selected the wrong shape

(a few preliminary “mis-selections” were made that the participants quickly corrected), and all

participants completed the task in well under the allotted 10 minutes. The lack of errors in the

matching task is highly encouraging as a basis from which to reason about youngsters’ abilities to

perceive and reason about convex hulls as a set of lit vertices in space, meaning that this kind of

3D modeling interface might be applied to other domains (e.g., as a cognitive assessment tool, a

puzzle game, etc.) with some optimism.

Figure 4.4: Results of the matching task, showing total time spent per participant (left) and average
time spent per shape across participants (right).
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4.2.4 Observations

Modeling trends as well as distinct modeling behaviors were documented in the process.

Common observations included building from the ground up (lowest vertices first), building in the

orientation that the object had been presented in, not clearing the poles/lights from the UCube

before starting to model a new shape, and modeling a shape by breaking it up into discrete parts

(e.g. a participant building a house would commonly build a cube first and then add on a vertex

to the top; a participant constructing the diamond might combine two opposite facing triangles).

Figure 4.5: Left: A participant using a strategy of placing the physical model on top of the UCube
while using both hands simultaneously to manipulate the towers. Right: A user pointing at the
software representation of the shape with one hand, while manipulating the UCube interface with
the other hand.

Unique behaviors were exhibited in the modeling process as well, reflecting a type of user

specific construction-based problem solving. One participant used their arm to connect the red

lights of the UCube for shape definition. A few participants oriented the object differently than

how it had been presentedtypically this occurred for the modeling of those objects with a pyramidal

apex (tetrahedron, house, diamond). Apex formation was perhaps one of the most difficult concepts

for most participants to grasp, as it required them to strategically align the base on a 3x3 grid so

there was a middle plug for them to create the apex. If participants were fixated on designing from
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a 4x4 grid then there was no center plug for them to create a midpoint. Some participants ended

up building an oblong polyhedron as opposed to a cube, or an oblique polyhedron as opposed to

an equilateral tetrahedron. Other observed behaviors included a participant who modeled shapes

by turning on lights for an entire shape edge, as opposed to just the corners and a participant

who built shapes that were floating, as opposed to resting on the base of the UCube. There were

also some notable behaviors regarding physical and gestural actions of the participants. Many

participants modeled with both hands simultaneously, placing towers and flipping switches without

a clear preference for a dominant hand. Participants would often gesture with their arms following

an arc in parallel with a face of the object they were currently modeling. This “tracing” behavior

was also noticed when participants were holding a physical model and tracing a side of the object

with their fingertip, often while rotating the object with the other hand. Finally, during object

possession phase three participants actually placed the 3D object on top of the UCube in the

modeling space while they reasoned out the construction (see 4.5 for an example). These gestural

and “embodied” interactions with the UCube, combined with a high degree of modeling success

spurred us not only to create a more robust and expressive system (called - SnapCAD - as detailed

in Chapter 2), but to attempt to tease out the relationships between modeling on these kinds of

devices and the gestures and speech produced when subjects were explaining their strategy in using

the devices. This eventually led to a comparative study using two new devices, two new modeling

modes, and introducing metrics to analyze some of the “embodied” aspects hinted at above.

4.3 SnapCAD and PopCAD

Starting in early 2014 we conducted a study using both the SnapCAD and PopCAD devices

with a group of 11-18 year olds at a local drop-in enrichment program that focuses on children

from under-served and low socioeconomic communities. Twenty participants enrolled in the study,

consisting of 12 boys and 8 girls (no one responded with other, although it was an option). We

collected some basic demographic information, including age, race, grade level, 3D modeling ex-

perience, 3D printing experience, computer ownership and use, interest in engineering, and how
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difficult they thought classes in school were. Parental consent was obtained (and child assent given)

for each subject in the study.

To present a snapshot of the demographic findings, then: the participants were primarily of

Latino or Hispanic descent, but also included those of African-American, American-Indian, Asian,

and Caucasian descent. Grade levels ranged from 6th-12th, with an overall average of 7.9 (8.33

for boys, 7.75 for the girls). Average age was 14 years, 1 month, 20 days (14 years, 6 months for

boys, 13 years, 7 months for girls). 18 of 20 participants had a computer at home. Describing

their comfort level using a computer on a scale from 1 to 10 (10 being most comfortable), the

participants averaged 7.9 (8 for boys, 7.75 for girls), with no scores below a 5. Of the participants

who had a computer at home (all but two of the subjects), two reported using it only a few times

a year, five used it a few times per month, four used it a few times per week, and five reported

using the computer everyday. Only three of the participants had any experience with 3D modeling

software. Interestingly, only two of the participants had never heard of 3D printing before enrolling

in the study, but none of them had ever designed or printed anything using a 3D printer - further

underscoring the lack of available tools for novice designers. When asked about their interest in

engineering, only seven children (all boys) stated they were definitely interested. However, only

two children (both girls) stated that they were definitely not. The rest (11 kids) stated that they

were either “maybe” interested, or “not sure”. When asked how difficult they felt school classes

were, six responded “easy for me”, 10 said ‘somewhat easy for me’, and four responded “somewhat

hard for me” (no one responded “hard for me”).

4.3.1 Procedure

The study ran for seven weeks total, comprising several stages, the first being a pre-assessment

of spatial reasoning skills. The spatial reasoning assessment was done using the “Children’s Mental

Transformation Task” developed by Susan Levine ([41] pp.1260-1261). In the task, participants

are shown two pieces of paper, side-by-side. One piece shows a 2D geometric shape, split apart

and rotated in one of several different ways. All shapes were symmetrical either horizontally or
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vertically (or both), and thus split along either a vertical or horizontal line of symmetry. Shapes were

translated in one of four different ways: (a) translated perpendicular to the line of symmetry (direct

translation), (b) translated and then moved diagonally apart (diagonal translation), (c) rotated

45 degrees outward from the line of symmetry (direct rotation), or (d) rotated and then moved

diagonally apart (diagonal rotation). The other piece of paper contained the geometric shape,

recombined correctly, along with three incorrect choices. In the study we conducted, participants

were given two sets of 10 shapes, one set as a pre-assessment before doing any modeling, and

another (completely different) set of 10 after completing the entire study, as a post-assessment.

Figure 4.6 shows an example instrument, with the four possible translations.

Figure 4.6: An example problem from the spatial reasoning exercise. The figure at the top shows
the choice array of four shapes, where the lower right figure is the correct option. Examples (a)
through (d) show the four different types of translations found in the exercises - direct translation,
diagonal translation, direct rotation, and diagonal rotation.

After the pre-assessment, participants were split into two groups of 10 students each - the

selection alternated evenly based solely on order of participation - with group A modeling first on

the PopCAD and group B modeling first on the SnapCAD (each device is described in Chapter

2). Each session begins with a brief (≈ one minute) introduction to the device, during which the
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participant is told how to operate the device, but not what any of the software buttons do, and

given free time to become comfortable with the interface. Participants were encouraged to explore

both the interface, and the buttons in the software that control the three primary modeling modes

(convex hull, path, minimal spanning tree).

Once the subject indicates that they are ready to move on (capped at 10 minutes), we move

into a series of three modeling exercises that explore each of the aforementioned modes. The basic

operation and a brief explanation of each mode were given to the participants as an introduction

to each mode. Four 3D-printed models representative of each mode were presented to the user in

an order judged to be from least complex to most complex (and thus was the same for each user),

for a total of 12 modeling tasks across the three modes. 24 models were used - one set of 12 was

used across every user’s first session (independent of device), with a remaining 12 models used in

every user’s second session. Figure 4.7 shows the two sets of models side-by-side.

Figure 4.7: The two groups of 12 3D printed models used in the first session (left) and second
session (right). Each row is a different modeling mode (back = convex hull, middle = path, and
front = minimal spanning tree). The shapes were presented in order from left to right as pictured
above.

The tasks that follow are the same for each device:

Tasks 1-3: Convex Hull Modeling, Path Modeling, Minimal Spanning Tree Modeling

Before each set of modeling tasks, the participant was given a brief demo of how each modeling
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mode interprets the points from the device. The user was then presented with a series of four (4)

plastic, 3D-printed models that were modeled on the device using the current modeling mode. For

each of these shapes, the participant attempted to recreate the shape using the modeling abilities

of the device and the software. The user was be instructed to indicate when they believe they have

successfully recreated the shape, as well as to think aloud about their modeling process. The time

to completion (of lack thereof), completion code, observational notes, and video were recorded. If

the user indicates modeling success, they shall be asked to explain their modeling strategy for the

purpose of logging gesture and speech data.

Task 4: Freehand Modeling

After the modeling tasks are complete, participants were invited to “freestyle” model an

object of their choosing, using any of the three modeling modes. By asking participants to think

aloud about their intentions and thinking processes during this exercise, we aimed to gain a deeper

understanding of the strengths and weaknesses of the system, as well as the thought processes and

engagement of the users in attempting to model a specific model of their own choosing. These

saved models were analyzed, based on which mode was used to create them, complexity (based on

number of points, faces, segments, and symmetry), and whether the shape was “exploratory” or

“intentional” (i.e. was the end artifact a result of sort of happy accident, or the result of intentional

process to create a specific model).

For the first three modeling tasks (but not the freestyle modeling), time to completion (or

request to move on) was recorded, along with an outcome code. The outcome was coded according

to a set of conditions detailed below in table 4.1, and was developed upon analysis of the recorded

video, in an attempt to fit the sorts of repeated behaviors that were in fact observed.

Participants were asked to “think aloud” about their process, difficulties, modeling choices,

etc. In the case that the user believed they had correctly modeled the shape (cases C and E2 in table

4.1) they were asked to explain their modeling strategy.1 Their explanation was videotaped and

1 Cases E1,E3,E4, and I did not provide the grounds from which to ask about modeling strategy and so were not
recorded.
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Table 4.1: The coding used in analyzing the modeling exercise outcomes, based on observations
from video taken during the study.

Category Code Definition
Correct C A complete and correct modeling of the shape
Error in recognition E1 The correct shape was modeled, but the user

did not identify it
Error in belief E2 A belief that the modeled shape has been mod-

eled correctly, when it has not
Error in implementa-
tion

E3 User knew shape was incorrect, and gave a cor-
rect explanation

Error in strategy E4 Knew shape was incorrect, and did not know
why or gave an incorrect explanation as to why

Error in proportion EP The general shape is correct, but the propor-
tions in one or more dimensions is off (e.g. too
tall, not wide enough, etc.)

Incomplete I Participant ran out of time, gave up, or asked
to move on

analyzed based on the coding strategies laid out in “The Importance of Gesture in Children’s Spatial

Reasoning”([41], p.1264), laid out in table B.1 below. The rationale for performing this analysis

in based in part on work by Ehrlich, Levine, and Goldin-Meadow [41][91][61], which suggests that

the frequency of gesture and relationships between speech and gesture act as a window into the

learning state and performance of the subjects.

The second session was similar to the first, with the subject using the device not used in

session one (no subject used the same device twice), and with 12 new models. Once modeling on

the second device was completed, users took a second spatial reasoning assessment of an additional

ten questions to help gauge if any meaningful difference in spatial reasoning skills has occurred

throughout the study.

A slightly modified version of the software was used for the user study, eliminating several

of the functions not being evaluated for the sake of presenting a clear interface for the users. The

multiple hull modes, spline, load, and save functions (described in Chapter 2) were eliminated, and

the rest of the graphical user interface was reorganized and streamlined. We combined the three

different .STL export buttons into a single export button that handled all three modes, changed
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Table 4.2: The various coding strategies used in the video analysis of subjects’ modeling strategy
explanations. Borrowed and adapted from [41].

Category Definition Speech Examples Gesture Examples
Movement Any indication of move-

ment
“Just slide them together
and then it looks like that”

Miming movement with the
hands

Perceptual
Features

Focus on a particular fea-
ture of the model

“Because there is a little
bend in here and a point
thing here”

Pointing to a specific fea-
ture on the model

Perceptual
Whole

Any indication of seeing the
model as a whole

“It looks like an arrow!” Gesture indicating inclu-
sion of the whole shape

Vague An expression of strategy
that the coder cannot deci-
pher

“Because I looked at that
and I looked at the differ-
ences”

Waving gestures above the
computer device that do
not indicate any specific
strategy

Other Any strategy not listed
above

“And here is like half of it.
But so and two halves make
a whole”

Using the hand to form a
straight line through the
middle of the whole shape
to represent the line of sym-
metry

the order of the remaining buttons and made them larger, and made the X,Y, and Z axis markings

larger.

4.3.2 Results

This section reports on the results from our study, relaying our findings across both sessions,

genders, modeling modes, and spatial reasoning scores in an attempt to tease out what conclusions,

if any, we might make about the strengths and weaknesses of our devices as well as how interacting

with our devices affected user’s spatial reasoning abilities, 3D modeling skills, or congruence between

speech and gesture in explaining the cognitive learning state of the user.

4.3.2.1 Modeling Results

In this section we will focus on delivering the results from the modeling exercises. Users went

through two sessions, modeling 12 shapes each time (four shapes each using convex hull, path, and

minimal spanning tree modes) for a total of 24 exercises. For each modeling task, a result code was
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recorded per the rubric shown in table 4.1. One user dropped out of the study (user six) before

completing round one, leaving us to report on 19 users for the first modeling session, ten of whom

started on the PopCAD and nine of whom started with the SnapCAD. A further three users did

not complete session two, leaving 16 users, seven girls and nine boys, who were split evenly over

the two devices in the second session (eight each on PopCAD and SnapCAD).

Table 4.3: An overview of the modeling task results, broken down into session number, gender,
device, and modeling mode.

Session 1 % Session 2 % Total %

Overall Correct 127/228 55.7% 116/192 60.4% 243/420 57.9%

Girls 45/84 53.6% 55/84 65.5% 100/168 59.5%

Boys 82/144 57.6% 61/108 56.5% 143/252 56.7%

PopCAD 90/120 75% 62/96 64.6% 152/216 70.4%

SnapCAD 37/108 34.3% 54/96 56.3% 91/204 44.6%

Convex Hull 40/76 52.6% 38/64 59.3% 78/140 55.7%

Path 48/76 63.2% 44/64 68.8% 92/140 65.7%

Tree 39/76 51.3% 34/64 53.1% 73/140 52.1%

Out of the 228 modeling tasks in session one, the group successfully modeled 127, or roughly

56%. Those users who started with SnapCAD performed 37 of 108 tasks, or 34%, while those using

the PopCAD device completed 90 of 120 tasks correctly, for a success rate of 75%. Girls completed

45 of 84 tasks (54%), while boys correctly completed 82 of 144 tasks (58%). Individual scores

ranged from 0 to 12 (perfect), with an overall overage of 6.68 correct shapes per user. Average

correct shapes per user was 4.11 for SnapCAD and 9.00 for PopCAD.

In session two, 116 of 192 (60%) tasks were performed correctly, with SnapCAD modelers

correctly representing 54 of 96 shapes (56%) and PopCAD modelers completing 62 of 96 shapes, or

roughly 65%. Girls completed 55 of 84 tasks (65%) while boys completed 61 of 108 tasks for 56%.

Individual scores ranged from 3 to 12 (perfect), with an average of 7.25 correct shapes overall, while

the average correct shapes per user was 6.75 for SnapCAD and 7.75 for PopCAD.

The two bar graphs in 4.8 show the average modeling times broken out over device and gender
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(on the top) and modeling mode (on the bottom). Modeling times were recorded from the time

the user was handed the shape until they indicated either that (a) they believed the model to be

complete, or (b) they gave up, wished to move on, or thought they were as close as they were going

to get (though they knew their model to be incorrect).

Figure 4.8: The average recorded modeling times for each session, broken out (on top) by device
and gender, and (on the bottom) by modeling mode. Error bars show standard error (SE).

We can easily pick out a few trends from these two graphs: average modeling session time

went down significantly in the second session, regardless of device or gender, although boys took

less time in both sessions, and the PopCAD seemed to take less time overall in each session than

modeling on the SnapCAD (although interestingly, the SnapCAD modelers in the second round

improved on their times from modeling on the PopCAD in the first round). When examining mode
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types, we see a similar trend of significantly decreasing modeling times in the convex hull and path

modes, but curiously, not in the tree mode where times improved in the second session by only a

few seconds. While the minimal spanning tree mode took subjects the least amount of time (of

the three modes) in session one, the improvement in both convex hull and path modeling times

left the spanning tree with slowest overall and average modeling times in session two. Seeing as

the minimal spanning tree mode posted the lowest percentage of correct shapes in both rounds

(and thus overall), we might expect the ranking we observed in round two, where average modeling

times corresponded with the overall percentage of correct shapes. It seems plausible that mastery

of the tree mode is slower to arrive than either the convex hull or path modes, and therefore one

extra session produced more dramatic results in the other modes (convex hull and path modeling

both improved by almost 7% in session two, minimal spanning tree by less than 2%).

4.3.2.2 Mental Transformation Task Results

Subjects were given two sets of 10 mental transformation problems, as discussed previously

in the procedure section. The first set was given before the first modeling session, as a sort of pre-

assessment. The second set was given after the second modeling session as a post-test. We recorded

performance data by session and by user, and present the results in Figure 4.9 broken out by the

type of symmetry represented in the shape (unilateral or bilateral) and the type of translation or

rotation performed on the shape (direct or diagonal translation, direction or diagonal rotation),

meaning that each shape had both a symmetry type and a translation type.

Overall, subjects performed very well on the Mental Transformation Task, correctly respond-

ing to 614 of 720 questions (a little over 85%). Performance was remarkably equal across genders,

with girls correct on 256 of 300 (85.3%) and boys on 358 of 420 (85.2%). Accordingly, we found

no sigificant difference in gendered responses across any symmetry or translation type - girls and

boys succeeded and struggled on the same sorts of tasks. Bilateral symmetry was significantly

easier than unilateral, with over 90% of bilateral tasks and only 78% of unilateral tasks performed

correctly. Rotation was more difficult than translation, and diagonal transformations were more
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Figure 4.9: A view of the Mental Transformation Task results, broken out by symmetry type
(B = bilateral, U = unilateral) and rotation or translation type performed on the shape being
transformed.

problematic than direct ones. Hence, diagonal rotations scored the lowest (75%), followed by direct

rotations (82%), diagonal translations (91%), and direct translations (93%).

Figure 4.10: Mental Transformation Task results, broken down by session and by user.

Figure 4.10 shows the Mental Transformation Task results broken down into sessions by user.

We observed a +7 net improvement in the second round among the 16 users who participated in

both sessions. Both girls and boys improved in the second session, though girls improved by a

greater percentage when compared to boys - from 82.3% to 88.6% while boys improved from 83.3%

to 87.7%, a 2% greater improvement among girls. Four users did worse on the second set of tasks,
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four did the same, and eight improved; the greatest change in both directions was +/- 3. There

was a no real correlation between improvement between sessions (or lack thereof) and modeling

performance overall (r = .20, p < .5), nor was there a real correlation between improvement on

the Mental Transformation Task and improvement in modeling score from session 1 to session 2

(r = −.20, p < .5), suggesting that the change between sessions on the spatial reasoning test and

modeling performance are mildly related, if at all.

4.3.2.3 Speech and Gesture Coding Results

During the modeling exercises, if a subject believed (correctly or not) that they had success-

fully modeled a shape, the facilitator asked the subject to describe the modeling strategy they used

to arrive at their answer. During these explanations, video recordings were analyzed for five types

of speech and gesture behaviors: those referring to movement, to the perceptual whole of the shape

being modeled, to a perceptual feature of the shape being model, as well as behaviors that were

vague or unintelligible, and those that did not fit into any of the above categories (labeled as “other”

- a more detailed description is available in the procedure section above). A given strategy was

only recorded once per modeling task, but multiple strategies per explanation occurred often and

were recorded (as was also the case in [41]). The table below breaks down the numbers and types

of speech and gesture observed over the two sessions; as such, we only report on the 16 subjects

who completed both sessions. For further insight into how some of the modeling strategies were

expressed by the users as well as the associated coding and gesture observations, we have compiled

a set of excerpts in Appendix B. These excerpts contain quotes from users while explaining their

modeling strategy, the observed gestures that occurred during the spoken explanation, and the

speech and gesture codes generated from those expressions.

Table 4.4 shows the total number of gesture and speech types we recorded, as well as how

they were split between each devices, genders, and sessions. The most common gesture and speech

types (by a significant margin) were about specific perceptual features of the models, those relating

to movement came next, followed closely by vague gestures and speech. The other two categories,
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Table 4.4: Gesture and Speech Observations over both sessions. Numbers in this table exclude the
totals from the three subjects who finished the first session but not the second.
G = Gesture, S = Speech, .M = Movement, .PW = Perceptual Whole, .PF = Perceptual Feature,
.V = Vague, .O = Other.

Total PopCAD SnapCAD Girls Boys Session 1 Session 2
G.M 113 62 51 73 40 39 74
G.PW 13 8 5 8 5 9 4
G.PF 180 102 78 96 84 93 87
G.V 100 50 50 42 58 34 66
G.O 7 4 3 6 1 4 3

S.M 107 64 43 55 52 46 61
S.PW 68 39 29 35 33 38 30
S.PF 186 103 83 97 89 101 85
S.V 104 55 49 40 64 32 72
S.O 70 35 35 33 37 18 52

Gesture 413 226 187 225 188 179 234
Speech 535 296 239 260 275 235 300

Combined 948 522 426 485 463 414 534

perceptual whole and “other” strategies, were barely represented in gesture - they were far more

common in speech, but still ranked as the least frequently recorded. Many users explained their

modeling strategy by doing a “step-by-step” recounting of their process that referred at each step

to the part of the shape they were modeling at that point. For example, it was common for a

subject to point to a segment of the model and say (for instance), “and then I put a point here,

for this part. . . ”, generating perceptual feature scores in both gesture and speech for nearly every

explanation they gave. Movement was often explained along the same lines (though less frequently),

often with subject using specific words that indicate motion (e.g. “then I move over here”, “I had

to go up here, then follow the path back down again”) while simultaneously motioning along the

directions they were indicating. Figure 4.11 shows a series of six still shots taken from the video

that depict (as best as possible in a single frame) various gestures made during a single explanation

of a modeling task strategy.

Interestingly, even without accounting for the difference in number of subjects, girls “out-
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Figure 4.11: A series of screen grabs from the video recording showing various gestures from a user
explaining her modeling strategy on one of the modeling tasks.

gestured” the boys overall (225 to 188), and in every category except for vague gestures, where

boys were vague in describing their strategies 24 more times over the course of the study. Speech

types were more gender-balanced, with the final tally being 260 for girls and 275 for boys, however

seeing as boys had more participants in both sessions of the study, the speech-per-participant

count actually favors the girls as well. The PopCAD interface produced more gestures (226 to 187)

and speech (296 to 239) than the SnapCAD, a finding mitigated somewhat by the fact that users

modeled so poorly on the SnapCAD in the first round and therefore did not arrive at a point where

a modeling strategy could be explained. If we isolate the second round only, where the performance

breakdown was much more even (62 to 54 in favor of PopCAD), then SnapCAD actually produced

more gestures (124 to 110) and more speech elements (159 to 141).

Perhaps the most curious data from Table 4.4 is the big increase in both gesture and speech

from round one to round two of the study. Even with three less participants in round two, overall

instances of gestures increased from round one by 55 (179 to 234, a 31% increase), and speech

instances increased by 65 (235 to 300, a 28% increase), yet the overall modeling performance

only increased by 5% in round two. A bit of a closer look at the types of gesture and speech

gives a plausible explanation: in both gesture and speech, the number of vague indications rose

dramatically (+32 for gesture, +40 for speech), while the number of perceptual feature indications
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dropped in both cases (-6 for gesture, -16 for speech). If we look at Figures 4.12 and 4.13 these

numbers start to make more sense.

Figure 4.12: A plot of the five types of gestures we coded (movement, perceptual whole, perceptual
feature, vague, and other) over the number of correctly modeled shapes. The slope of the lines
indicate the strength of correlation between each gesture type and overall modeling performance.

Figure 4.12 shows a plot of the number and kind of gestures produced by a user over the

number of shapes they modeled correctly over the two rounds of the study.2 The lines associated

with each scatter plot shows the strength of the correlation between instances of that gesture type

and modeling performance; the steeper the positive slope, the higher the positive correlation and

vice versa. As we can see from the graph, three of the conditions have positive slopes (perceptual

feature, movement, and perceptual whole), while two have negative slopes (vague and other).

By far the strongest positive correlation3 is between perceptual feature gesturing and modeling

performance (r = .61, p < .025), while vague gesturing has a weak negative correlation (r = −.22,

2 Data from the three users who dropped out of the study has been omitted from this graph as well as Figure 4.13
3 All correlation calculations were done using Pearson’s Correlation Coeffcient.
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p < .5). Going back to our earlier table, then, the sharp uptick in vague gestures and mild decline

of perceptual features may help to explain why such an increase in gesturing did not result in a

similar upswing in modeling performance.

Figure 4.13: A plot of the five types of speech we coded (movement, perceptual whole, perceptual
feature, vague, and other) over the number of correctly modeled shapes. The slope of the lines
indicate the strength of correlation between each speech type and overall modeling performance.

One might expect that correlation patterns would be similar between gestures and speech

of the same type (e.g. instances of movement in gesture would be as correlated to modeling

performance as instances of movement in speech), and while we did find some similarities, some

surprising differences appeared as well. Speaking about perceptual features was (as with gesturing)

the most highly correlated type to modeling success (r = .58, p < .025), but where gestures marked

as “other” had a very weak negative correlation, “other” categories of speech were second most

highly correlated with modeling aptitude (r = .56, p < .025) - nearly as much as utterances on

perceptual features. Part of this explanation lies in the frequency discrepancy between “other”



72

gestures, of which there were only seven, and “other” speech utterances, of which there were ten

times more (70). The other (pardon the pun) part of the explanation lies in the fact that we have

many more words with specific meanings than gestures that are precisely defined, so (for example)

explanations referring to looking at the software itself (e.g., “I looked at the screen and it looked

like it”), or reasoning about the nature of how the mode works (e.g., “Since it was path I knew it

would work”), or internal operations (e.g., “I just look at it and see it”), are harder to perceive in

gesture. A possible relation to the potential for specificity in speech lies in the stronger observed

negative correlation between modeling ability and speech marked as vague (r = −.41, p < .25),

compared to gestures marked as vague (r = −.22, p < .5), indicating (perhaps) that a failure

to speak specifically (given more abundant options) is more harmful than a similar failure when

gesturing.

4.3.3 Observations

A few notes on the above findings are worth making here. Broadly speaking, the study

indicated many positive outcomes: overall modeling ability went up while average modeling time

went down, the participants improved on every modeling mode in the second session, there was a

net positive performance on the second mental transformation task when compared with the first,

and participants were generally engaged by the experience, which for most subjects was their first

computer-based 3D modeling experience. However, even though no user saw the same device or

shape twice, it is as yet unclear how much of the improvement might be contributed to a “practice

effect”. Due to the “drop-in” nature of the user study environment, the time between each single

participants’ sessions varied, based on their attendance and availability (i.e., in some cases users

had homework or other activities to finish).

We observed some moderate correlations between types of speech and gesture and modeling

success, though not necessarily the kinds of correlations we might have expected based on prior

related studies. Nor were speech and gesture correlated to modeling acumen in the same ways

- some types of gesture were less effective than their corresponding spoken elements, and vice
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versa. In some cases, the results were observed were counter-intuitive - such as the anomaly in

average modeling times of subjects when using the minimal spanning tree mode, the fact that

boys performed worse during the second modeling session while girls performed much better, and

that some subjects performed worse on the second mental transformation task, even though they

were arguably “primed” by going through the modeling exercises beforehand. Also unexpected

is the sharp decline in performance on the PopCAD device in the second session - over 10% -

especially after such a high percentage in the first round and given more “experienced” users in

the second session. Equally surprising, given a rather unimpressive first round performance, is the

sharp increase in modeling success on the SnapCAD in the second round (a jump of 12%), so much

so that when coupled with the decline in PopCAD performance, we may wonder on the possible

disparity between the groups in “inherent” ability for these kinds of tasks. Another possibility is

of course that the order in which subject encounter the devices is more important than we had

originally surmised - perhaps the users who started with PopCAD did better on the SnapCAD

(and overall) because they started with PopCAD. We examine these, as well as the relevance of

age and shape complexity on modeling ability, along with a deeper discussion of results across all

three studies in the following chapter.



Chapter 5

Discussion

We devote this chapter to a deeper look at some of factors that may (or may not) shed light on

a few of the more perplexing and intriguing observations made through the user studies mentioned

in the previous chapter, as well as a meta-review of what, if anything, we may conclude based on

our reported data and observations. We spend the most attention on our latest study (with the

PopCAD and SnapCAD) as it is not only the most recent, but the most significant. That study

concerns whether or not our devices can be used effectively for modeling by novice users as well

as touching on the relationships between our devices, spatial reasoning, and embodied cognition.

We start with the significance of the gesture and speech observations made in the PopCAD and

SnapCAD study, discuss the role of age in relation to modeling performance, followed by an analysis

of the effects of shape complexity on modeling acuity, a closer look at the error coding we performed,

and finally some meta-analysis of the observed data over the three user studies described in the

last chapter.

5.1 Gesture and Speech Significance

The work of Ehrlich[41], Levine[91], and Goldin-Meadow especially[60][61], serves as a rough

guide to our most recent study design, as they touch on the role of gesture in determining spatial

reasoning performance, and later provide strong evidence that gesture is a valuable window into

the mind, all of which supports the notions inherent in embodied cognition - that body and mind

are far more tightly linked than we have traditionally be led to believe. As we operate under these
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assumptions as reasoning to create tangible, physically involved interfaces (as opposed to pure 2D

software) it is worth taking a deeper look into how our study results compare and contrast with

this earlier work.

Ehrlich and Levine’s studies focus on the gestures and speech produced during children’s

explanations of how they solved a series of mental transformation tasks. The participants were

presented with the same sorts of instruments used in our PopCAD and SnapCAD study, although

our studies differ significantly in several ways. Of course, Ehrlich and Levine had no devices, and

evaluated the speech and gestures produced in explaining the mental transformation task, whereas

we examined the strategies expressed when modeling on the PopCAD and SnapCAD. Apart from

one practice condition where wooden blocks were used (which in their study had no effect) all of the

tasks in [41] were based on 2D paper representations, and the subject had no physical contact with

any of the objects they were trying to model. In our study, subjects were handed a 3D-printed

(and thus 3D) model of the shape they were attempting to reproduce. Additionally, in Ehrlich

and Levine’s studies, subjects were instructed to (in their mind) “move the pieces together” or to

“observe the movement” of the pieces as manipulated by the experimenter. These factors, as well

as differences in age (our subject population was 5-13 years older than those in [91] and [41]) likely

contribute to (at least of some of) the differences observed in our study. We spend the next two

subsections dissecting the similarities and contrasts in our results compared to the finding reported

by Ehrlich, Goldin-Meadow, and Levine.

5.1.1 Contrasts

Given the differences Ehrlich’s study and own our own, it is no surprise that our findings

should differ. While the gesture and speech analyses occurred while subjects were explaining a

modeling strategy, the type of modeling activity they had been asked to perform was substantively

dissimilar. As noted above, subjects in our study were handed physical, 3D models of the target

shape they were tasked with modeling, and could hold on to that object (and rotate it, look at

it from different angles, hold it in front of the device or the computer screen, etc.) during their
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modeling process. Afterward, when asked about their strategy, they still had that object, and often

gestured to it (or with it) and (of course) talked about it. No such “hands-on” activity was involved

in the studies we reference above, nor (as we note later in the chapter) could we find substantive

work involving such manipulative activities to examine spatial reasoning ability.

We contend that the “embodied” nature of the tasks in our study help explain some of the

differences in gesture and speech patterns and correlations that we observed. In fact, it is likely

that given Goldin-Meadow’s body of work and studies involving cognition and gesture, she would

concur with us. Furthermore, the way in which the examiner in the above studies introduces the

tasks to the subjects involves several direct references to movement (e.g. “In your mind, move

the pieces together and then move them back apart”). This is significant, as gestures and speech

relating to movement was (in their study) both the most frequent type of strategy expressed but,

as far as gesture correlations with task performance is concerned, gestures coded as relating to

movement was the only type of response they recorded that was exclusively related to answering

the test questions correctly. To take an excerpt from [41] (pp. 1265):

“Gesturing about moving the pieces was correlated with the number of problems
answered correctly (r = .461, p < .001), but it was not correlated with the number
of problems answered incorrectly (r = .202, ns). Thus, gesturing about moving
the pieces together was uniquely related to correct performance, whereas talking
about moving the pieces was not.”

To summarize our related findings, then: in our study, gestures about movement were the

second most observed expression, after those related to perceptual features (113 to 180); speech

about movement was also second to perceptual features in frequency (186 to 107), and neither

gesture nor speech was significantly tied to performance in our modeling tasks (r = .29, p < .29

for gesture, r = .27, p < .32 for speech). Instead, we found the highest correlation (and highest

frequency) in speech and gestures relating to perceptual features (r = .61, p < .025 for gesture, r =

.58, p < .025 for speech). Ehrlich found only a negative correlation between modeling performance

and perceptual feature coding, both from speech and from gesture.

We are then left to wonder about the rather drastic differences in our findings. What might
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account for both the frequency and correlation differences in movement versus perceptual feature

strategies? Although of course we cannot know for certain, we hinted at some of the possibilities

above: the “embodied” nature of our tasks, having the subjects hold onto an object representative

of the solution they were striving for, the participants being’ “primed” for certain kinds of responses

in the earlier studies, and the differences in age all may account for some of the differences. The kind

of mental processes involved in a mental transformation task are not all that different (necessarily)

from those involved in modeling an object with the PopCAD (for example) - a robust mental

image of the shape in question is likely a boon in either case. However, a model can be built step-

by-step, and the results observed and reflected upon. When picking a correct shape in a mental

transformation task, one may mentally operate upon features of the shape in a step-by-step manner,

but there is no opportunity to reflect upon various strategies, a holistic decision has to be made.

In a step-by-step modeling process, it seems common (from the data and from our own experiences

and intuitions) for a modeling “step” to focus on a perceptual feature of the shape being modeled

(e.g. the next segment in a path or the top point in a pyramid-shaped hull), and to do so in a

very conscious way. Additionally, subjects in our study were allowed to continue holding the model

while they gave their strategy, providing a ready “facsimile” on which to project their modeling

intentions. These factors may have “paved the way” for a high number of speech and gesture about

perceptual features of the models, as the step-wise nature of the task and the physical surroundings

lead themselves toward thinking in terms of the characteristics of the shapes. Although we observed

a high number of expressions coded as movement, there is nothing inherently “movement-oriented”

in 3D modeling (ones body moves in using our devices, of course, but models can be created in

other ways, e.g. strictly from text coordinates). In contrast, a mental transformation task is,

explicitly asking the user to “move” the object, mentally, into the correct formation. Thus it is

unsurprising that the examiners in Ehrlich’s study repeatedly used the word “move” and appealed

to references about movement (as noted above). It is equally unsurprising then, that by using this

sort of language and then looking at “movement” as a gestural and spoken strategy, many instances

were found, as the task and the instructions surrounding the task are both “movement oriented”
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in a way that the modeling tasks in our study were not.

One of the other major findings in [41] and [91] is that significant performance differences

exist between genders on these tasks, and are evident at younger ages than previously thought.

Existing research at the time claimed that gendered differences in spatial reasoning developed

around puberty, but that several studies had challenged this assumption. In either case, gender

differences should have shown up in our study based on the age range of our subjects (11-18). Boys

did outperform girls in session one of the modeling task, though it was not by a terribly significant

portion (4%), they did model faster than the girls in each round of the modeling exercise (by about

7 minutes total in the first session, five minutes overall in the second session), and they produced

more speech instances than the girls did overall (275 to 260), although since there were more boys

in the study, this advantage is negligible at best. Interestingly, our findings had girls performing

better in many areas; they outperformed boys in the second modeling session by 9%, and across

both sessions by almost 3%. Despite a disadvantage in numbers, girls produced more gestures (225

to 188) including those most closely linked to modeling success, perceptual features (96 to 84).

Girls also produced more speech elements about perceptual features (97 to 89). The results from

our mental transformation task have boys and girls performing about equally, with girls edging out

the boys by one tenth of a percent (85.3% to 85.2%, respectively).

Was our sample size too small? Most likely, although it would be interesting to perform a

larger study with an n closer to what Ehrlich and Levine had to see if working with our devices does

anything to mitigate gender effects. Did we have an exceptionally bright group of girls? Probably,

though no independent tests were done for intelligence or other factors that would have indicated

an advantage - remember, the girls who enrolled in the study averaged almost a full year younger

than the boys (13 years, 7 months for girls and 14 years 6 months for boys), so age and experience

advantages are unlikely (none of the girls reported any previous 3D modeling experience). Although

the nature of the modeling exercises in our study were more piecemeal, possibly allowing girls more

of a chance to reflect and correct their mistakes than in the mental transformation tasks,1 we saw

1 There is some evidence, relayed in [41], that girls tend to utilize a step-by-step strategy in mental rotation
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no significant difference in the MTT tasks we administered (in fact girls did slightly better).

One possibility is that modeling with the sorts of devices we created are somehow more

beneficial to girls than to boys; that the spatial reasoning advantages that boys have are either

negated, or that the types of modeling exercises we did significantly altered boys’ normal spatial

reasoning strategies, which has been known to have a detrimental effect on performance[24][95].

Plenty of other possibilities exist (e.g., the girls simply tried harder) and there is no clear way of

determining the source(s) for our results, so we hesitate to make any claims. However, we find it

encouraging that girls were able to perform (even out perform) when compared to the boys in our

study.

5.1.2 Commonalities

Despite the differences mentioned in the previous section, some of our observations did agree

(or at least failed to disagree) with the previous studies. In Ehrlich’s study as well as ours, the

study population improved overall. In each case, girls improved by a markedly greater percentage,

whereas boys improved less so, and in some cases performance actually decreased (in our second

session overall and in the post-test for Ehrlich’s “imagine movement” condition). Movement and

perceptual feature strategies were the most common in both studies, with perceptual whole in-

stances far behind. Generally speaking, gesture expressions deemed most “task-appropriate” (per

our discussion in the previous section) served as the highest observed correlation to modeling suc-

cess; perceptual feature gesturing in our study, movement gesturing in Ehrlich’s study. This is, we

believe, the main “gist” of both these experiments as far as gesture analysis goes - that gesture of

a strategy appropriate to the task at hand is correlated with success on that task, more so than

speech alone. This holds with the core of Goldin-Meadow’s findings, that gesture is a window into

the cognitive process and that by analyzing gesture we can gain insight into the mind of the learner.

problems, whereas boys tend to deal with the whole shape at once.
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5.2 Age

One of the more profound and noticeable results from the PopCAD and SnapCAD study

was the difference in modeling success between the devices in the first round, and how much that

difference was erased on the second round. In the first session, users modeling with the PopCAD

correctly modeled 75% of the given shapes, the highest percentage of any device in any round.

Conversely, those starting on the SnapCAD modeled only 34% of their shapes properly. Given just

this data, we might be tempted to conclude that the PopCAD is a much easier introductory device

- or that the SnapCAD is insufferably difficult. However, when we factor in the second round data,

in which each subject modeled on the device they did not use the first time around, a different

picture emerges: PopCAD modelers in the second round modeled 65% of the shapes correctly while

SnapCAD modelers achieved a 56% success rate. If we track each group (let us call the first round

PopCAD modelers group A, and the first round SnapCAD modelers group B), we would be sorely

tempted to declare that the groups themselves are unevenly talented: Group A scored 75% on

PopCAD and 56% on SnapCAD, while group B scored 65% on PopCAD and 34% on SnapCAD.

Since we did not perform an intelligence test or any sort of generalizable aptitude test, we are

left to guess using other means. Given the massive development (both cognitively and physically)

that occurs between the age extremes in our subject population (11 to 18), it would be tempting

(and even logical) to assume that the older subjects would perform much better on the modeling

tasks than their younger counterparts. As it turns out, the average age of group A was higher

than that of group B - but only by three months (group A average age was 14, group B was

13.75). We found a very modest correlation (r = .39, p < .15) between age and the number of

correctly modeled shapes, suggesting that while not to be overlooked, it may play less of a role

then we would have suspected. It is also possible that the statistics are slightly misleading here

- the subject population was weighted toward the younger end of the spectrum: the average age

was 13.8, while median age was 13.5, and the mode was 12 years old. Meaning the few older

participants would have had to perform impossibly brilliantly (i.e., higher than the highest possible
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score) for a strong age to performance correlation to show up. In keeping with these findings, we

also found no real correlation between age and overall performance on the mental transformation

tasks (r = .23, p < .45). This data of course does not discount that age plays a factor, nor that

group A may have been more talented than group B in the PopCAD/SnapCAD; simply that within

rough parameters, age matters, just not as much as one might think. Take for example our oldest

participant, an 18 year-old boy. He correctly performed 11 of the 24 modeling tasks, while the

four 12 year-old participants scored 14, 11, 12, and 11. Our youngest participant, and 11 year old,

reproduced seven shapes correctly, while a 13 year old did five correctly, and a 14 year old got six

right.

5.3 Shape Complexity

In order to attempt to judge each shape’s complexity, we sought out a previously-defined set

of criteria by which to judge “complexity”. As it turns out, there is a long and thorough discussion

of complexity in relation to two-dimensional shapes, starting seemingly with Fred Attneave

and Malcolm Arnoult[19][18] in the mid 1950’s, who define methods of generating random two-

dimensional shapes and examine their physical characteristics in relation to their judged complexity.

As it turns out (in [18] as well as others’ follow-up work) the “Number of Turns” in the shape was

responsible for significant amount (nearly 80% in Attneave’s study) of the preceived complexity

of a shape. “Number of Turns” is defined as “the number of maxima (regardless of sign) in one

cycle of the function relating curvature to distance along the contour. This function is a series

of spikes for any angular shape, and a step-function for any curved shape. . . ” (see p. 226 of the

aforementioned article). Symmetry, angular variability, and squared perimeter over area also had

some effect.

However, as it seems unclear to us how one might adapt a “Number of Turns” rating to a true

three dimensional model. Many studies claim to have studied complexity in relation to 3D mental

transformation tasks, (starting with Shepard and Metzler[131]), but they (as well as the many

other studies we found[101][132][140] used perspective line drawings, not actual physical models.
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This had an advantage for the types of mental rotation tasks they were performing (recognition of

matching pairs), but seemed insufficient for the tasks in our study.

This led us to develop (as best we way) a rubric to determine the complexity of the shapes we

presented in the study, as a way of teasing out any correlation between complexity and performance.

In lieu of attempting an exact number of turns estimate, we included three criteria: (a) the minimum

number of lights necessary to guarantee the correct shape,2 (b) the number of faces (for convex

hull models only), the number of line segments (for path models only), or the number of distinct

branches (for tree models only), and (c) a symmetry score based on number of lines of symmetry,

from 3 (indicating asymmetry) to 0 (indicating three or more lines of symmetry). The scaling

for symmetry comes from the belief that indicators (a) and (b) above are more closely aligned

with Attneave’s “number of turns” metric (being highly correlated to perceived difficulty), while

symmetry was much less correlated to complexity (although symmetry did still play a part), so

we made the scale as low as possible so that it would weigh less on the overall complexity score

of a model. So, for example, a regular octahedron would have six points, eight faces, and a zero

symmetry score for an overall difficulty score of 14. The complexity score of each shape is shown in

5.1 next to the number of times it was modeled correctly. The shapes in each session were of course

different, but are labeled the same in this table, indicating the order in which they were presented.

Table 5.1: Complexity of Models and Modeling Performance (CH = Convex Hull, P = Path, T =
Minimal Spanning Tree)

CH1 CH2 CH3 CH4 P1 P2 P3 P4 T1 T2 T3 T4
Session 1

Complexity Score 14 19 19 19 7 18 20 24 9 13 17 17
Performance of 19 8 13 8 11 17 14 8 9 12 8 8 11

Session 2
Complexity Score 12 20 15 13 14 14 18 17 21 17 16 25
Performance of 16 7 9 11 11 11 13 8 12 7 11 7 9

2 In minimal spanning tree models where a placement of lights results in several possible correct formations, only
one of which is the desired shape, we add points necessary to “force” the correct representation.
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One might expect to see a strong negative correlation between a given model’s complexity

score and the number of subjects who were able to model it correctly, however the observed cor-

relation was only moderate: r = −0.41, p < .05 over both sessions, indicating that while shape

complexity (at least as we have calculated it) is significantly correlated, it plays only a moderate

role in determining modeling performance in our study.

5.4 Freehand Modeling

At the end of both sessions, the subjects were given the opportunity to model a shape of

their own design, using any of the modes presented during the modeling exercises. Each participant

modeled after the first round, and then were given the opportunity to create a different shape after

the second round that they wanted printed out instead (most subjects stuck with their original

model). The prints from the 16 participants who finished the study are shown in Figure 5.1.

Figure 5.1: A collection of the child-designed objects from the PopCAD/SnapCAD study.

Objects were created using all three modes, though only one participant chose the convex

hull mode for their object; nine subjects used the path mode, while six used the minimal spanning

tree mode. It should be noted that almost every participant explored all three modes on their own
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before settling on one they liked the best. Choices were sometimes based on strategy (e.g. only

one mode was capable one making the shape they envisioned) while many users simply explored

different modes and patterns until something struck their fancy. As evident in the picture, some

users went with letters (usually the initial of their first name), others attempted to create a symbol

they knew (e.g. one participant attempted the “Tri-Force” symbol from the Zelda video game

franchise), and others (as hinted at in Figure 5.1) simply turned points on and off until they

achieved an aesthetically pleasing object.

Of the 24 user-created models (19 from the first session, 5 more from the second session) we

received an even number generated from each device (12 apiece). We were curious to see if, on the

SnapCAD models, users took advantage of the greater expressive power offers by the larger input

space (a 73 grid compared to a 33 grid). Of the 12 SnapCAD models, 9 of them would have been

impossible to model using the PopCAD (without substantial use of the editing mode, at least).3

Of the five users who chose to model a new shape after the second round, four of them had used

PopCAD in the first round and SnapCAD in the second round. Three of these four users modeled

shapes they would not have been able to using PopCAD. However, based on the difficulty rubric

laid out in the previous section, the average complexity of shapes modeled on the PopCAD was

actually higher than that of SnapCAD (22.83 to 18.50). Interestingly though, the shapes with the

three highest scores (all from PopCAD) were from users who chose to model different shapes after

the second round in order to use the SnapCAD - but to create a “simpler” shape (i.e., a shape

with a lower complexity score). Granted, there are some mitigating factors at work here - on the

PopCAD interface, it is fairly straightforward to turn on all 27 points - it is a simple touch of the

finger, the lights are already placed on the towers. On SnapCAD, more effort is required to take

a tower, place it into a socket, take an LED board, and then snap it onto a location on the tower.

In fact, several of the high scores we just referred to were generated by users simply turning on

all the lights with path or tree mode active. If we compare the set of PopCAD models without

3 Two notes here: (1) We counted the shape as impossible if any vertices would have to change planes to create
the shape; (2) Any shape modeled on PopCAD can, of necessity, be recreated on SnapCAD.
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those models dropped in favor of SnapCAD models after the second session, the shape complexity

average drops to 16.75 - a few points less than the SnapCAD average.

Interestingly, most of the “intentional” models - those models created from a firm mental

model or notion of what the final shape should be - a preferred strategy was to use the path mode

and a singular vertical plane (e.g. the first row of three towers on the PopCAD) to treat the

device essentially as a 2-dimensional drawing tool. We can see (in the figure above) shapes like the

star, or the letter “s” - while they print in 3D of course, the modeling necessary to create these

shapes happens in 2D. Also of note is that the users overwhelmingly chose a vertical (as opposed

to horizontal) plane in which to work. When we imagine ourselves drawing or writing, it is almost

along a flat horizontal surface (except perhaps when writing on a whiteboard or painting on an

easel), so why the preference for verticality? While we cannot know for certain, it is true that some

amount of verticality is implied in the device - the towers themselves rise in vertical columns above

the “floor” of the device. Additionally, the average time writing manually as opposed to typing on

a computer has significantly decreased in recent years, so perhaps the vertical screen of a computer

somehow relates. In any event, using the device as more of a 2D drawing instrument is a somewhat

unexpected, but nonetheless welcome observation.

The freehand modeling session (or sessions) were quite clearly the most enjoyable for the users

themselves. None of the participants refused to do the freehand modeling session, or quit in the

middle of it. In fact, many subjects went over the allotted 10 minute modeling window exploring,

testing ideas, rearranging point configurations, and generally being absorbed by the experience,

which we found encouraging (and of course we allowed subjects to play as long as we could). This

suggests some viability for a device like this in a classroom (especially one with a desktop 3D

printer), where students could simply play with the interface, observe the interactions between 2D

and 3D representations in a fluid manner, and print their own creations with the click of a button.
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5.5 Error Analysis

For each modeling task, one (and only one) of seven error codes was recorded, based on the

outcome of the task. A more complete detail of the error codes can be found in table 4.1; this

section focuses instead on what significance (if any) these error codes have on our observations4 .

To briefly recount the codes and their associations, then: C = correct, EP = error in proportion

(general shape is correct, but model is too tall, too wide, etc.), E1 = error in recognition (subject

had the correct shape but did not recognize it), E2 = error in belief (thought the shape was correct

when it was not), E3 = error in implementation (knew shape was incorrect, but knew why), E4 =

error in strategy (subject knew shape was incorrect, but could not explain why), I = incomplete

(includes giving up, asking to move on, running out of time).

Table 5.2: Error Code Breakdown. C = Correct, EP = Error in Proportion, E1 = Error in
Recognition, E2 = Error in Belief, E3 = Error in Implementation, E4 = Error in Strategy, I =
Incomplete.

Total Session 1 Session 2 PopCAD SnapCAD Girls Boys
C 243 127 116 152 91 100 143
EP 44 19 25 16 28 20 24
E1 1 1 0 0 1 1 0
E2 50 28 22 20 30 13 37
E3 2 2 0 0 2 0 2
E4 17 9 8 7 10 6 11
I 63 42 21 21 42 28 35

As we can see from Table 5.2, several types of errors barely occurred (errors in recognition

and errors in implementation), while others were more common (proportional errors, belief errors,

and incomplete tasks). As a designer, it is comforting that errors in which the user had the

correct answer but was unable to recognize it and errors in which the subject knew the correct

strategy to model the shape but could not implement it (E1 and E3, respectively) were minimal,

as these errors seem to point more towards a failure of the interface (the software representation

4 Again, this data is from the PopCAD/SnapCAD study only.
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being unclear, or the modeling mechanisms being hard to use) as opposed to genuine difficulty in

modeling the shape. Interestingly, although not significant statistically because of their sparsity, E3

codes actually had a mild positive correlation to modeling success (r = .31, ns), possibly indicating

that correct expression of strategy in cases of error are positive pointers towards modeling success

in other cases.

Incomplete codes tell us little about the beliefs or modeling strategy of the user beyond an

inability (or unwillingness) to model the shape in the given time. Unsurprisingly, “I” codes present

a very high negative correlation with modeling success, as no other strategy code could be applied

(r = −.825, p < .001). As we might have guessed, a bad strategy is better than none at all: code

E4, where users knew their model was incorrect, yet expressed a strategy (albeit one that would

not have yielded the correct solution) was still negatively correlated with overall modeling success,

but less so than “I” coded results (r = −.610, p < .013). E4 codes also carried a weaker negative

correlation than E2 codes, where the user mistakenly believed they had modeled the shape properly

(unlike in E4 codes, where the user was aware the shape was wrong). E2 codes were the second

most negatively correlated error to modeling success (r = −.764, p < .001).

While developing the coding system described above, it seemed important to separate in-

stances where the modeler had modeled the shape properly except for an error in proportionality,

instead of simply lumping them into the E2 code. This kind of error was fairly common, occur-

ring 44 times in our study, and seemed to represent its own unique category, although we were

unable to find related literature to support this. However, of the categories with more than a few

instances, errors in proportion were the least negatively correlated to success on the modeling tasks

(r = −.235, p < .390), somewhat justifying our belief that errors in proportion only were of a differ-

ent breed of mistake. This likely stems from the fact that unless a user asked directly if proportion

in the models mattered, they were not told that it did. This means that several users who repeat-

edly made EP errors may have been able to fix their models had they known that proportionality

was a factor. Occasionally, during the explanation of their modeling strategy, users who had an

EP error would realise or express that they could have modeled the shape more accurately (and
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sometimes even fix it on the spot), in which cases modeling times and error codes were adjusted

accordingly. Although we cannot present direct evidence why errors in proportion are less harmful

than the other sorts of errors we recorded, it does seem somehow intuitive to us that this should

be so; a triangular prism that is wider than the model presented is still a triangular prism - it is

not a cube, or tetrahedron - there is not an error in “kind” - merely one of scale. A mismatch in

proportion only seems to imply a greater degree of understanding and modeling ability than simply

misrepresenting the intended shape completely, and the data we have collected seem to bear this

out. Although none of these findings are particularly surprising on their own, it is worth noting

that the kinds of errors modelers make are very often indicative of their overall performance.

5.6 Cross-Study Comparisons

The three studies mentioned in the last chapter are quite different in most respects. The

first two UCube studies have much more in common with each other (obviously) than with the

PopCAD/SnapCAD study, yet it is worth looking at the results from all three to investigate what,

if any, larger patterns emerge.

Table 5.3: Cross Study Comparisons.

Subjects Ages Modeling Modes # Models Correct %
UCube P ilot 14 (6 groups) 12-14 Convex Hull 5 24/30 80%

UCube Follow − Up 10 (indiv.) 11-13 Convex Hull 5 41/50 82%
PopCAD/SnapCAD 20 (indiv.) 11-18 C.Hull, Path, Tree 24 243/420 57.9%

When we compare raw modeling performance across studies, we see the first study resulted

in 80% (24 of 30) correct models, the second UCube study resulted in 82% (41 of 50), while the

third study resulted in only 243/420, or about 58%. The last study is of course the outlier, but the

above table includes models from the other modes (Path and Tree), that the other two studies did

not examine. If we compare only across convex hull modeling tasks, the PopCAD/SnapCAD study

yields eight models across both modes, with 78/140 convex hull tasks modeled correctly, or 56%.
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While much lower than the earlier studies, this number still ignores the differences between devices.

Convex hull models on the PopCAD were correct 30/40 times in the first round and 17/32 times

in the second round, for a total of 47/72 for a little over 62%. SnapCAD produced 10/36 correct

models in the first session and 21/32 in the second round, or 31/68 or abut 46%. Interestingly,

neither of these numbers is particularly close to the convex hull success we observed in the earlier

UCube studies.

What might explain this discrepancy? Are the PopCAD and SnapCAD devices really that

much harder to use, or could there be another explanation? One possibility worth looking at is the

shape complexity metric we developed in the previous section, as we noticed a moderate negative

correlation between shape complexity and modeling score, suggesting that if we the models were

much easier in the easier studies, some of the difference in score might be attributed to that

relationship.

As a brief reminder, then: the complexity score for a convex hull is the sum of the number

of points and faces plus a symmetry score (three points for asymmetry, two points for one-axis

symmetry, one point for two-axis symmetry, and no points for more than two-axis symmetry). To

report the complexity scores (breakdown of points, faces, and symmetry score is given for the two

studies not previously disclosed):

UCubeP ilot : 2 (2+0+0), 2 (2+0+0), 14 (8+6+0), 12 (6+5+1), 11 (4+4+3)
41 / 5 = 8.2 complexity average

UCubeFollow−Up : 14 (8+6+0), 8 (4+4+0), 14 (6+8+0), 18 (9+9+0), 18 (9+6+3)
72 / 5 = 14.4 complexity average

Pop/Snap : 14, 19, 19, 19, 12, 20, 15, 13
131 / 8 = 16.375 complexity average

While the PopCAD/SnapCAD study did in fact have the greatest average complexity score,

it beat out the highest performing study (the UCube follow-up) by less than two points. Given

the 20% plus drop a two-point difference does not seem to be able to explain it all, especially

given that the highest performing study did not have the lowest complexity score (the first pilot
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did). However, one mitigating factor may be that four of the shapes in the PopCAD/SnapCAD

study were harder than the hardest shapes encountered in the UCube follow-up study. It could

be that performance is relatively linear up until a certain complexity point, after which it drops

dramatically. We also used more “standard” polyhedrons in the UCube follow up, many of which

have a “deceptive” complexity score; a cube, for example, may be the easily recognizable and

most easily modeled shape (it was in the UCube follow-up study), but it has a complexity score

of 14, more than the “right-angle” off centered pyramid we used in the PopCAD/SnapCAD study.

Moreover, we did not use a cube in the PopCAD/SnapCAD study, while it was used in both of

the UCube studies. Another possibility is that, given the smaller sample size and fewer models,

we simply did not take a large enough sample in the first two studies. The pilot had six groups

over five shapes (30 tasks), the follow-up UCube study had five tasks with ten individuals (50),

while the PopCAD/SnapCAD study had four tasks over 19 individuals in the first session and four

tasks over 16 individuals in the second round for a total of 140 tasks - almost three times the size

of the UCube follow-up. It is possible that if we had performed a larger number of tasks in the

earlier studies that the performance numbers would start to move closer to what we observed in

the PopCAD/SnapCAD study.

Finally, one last factor to take into account here are the subject demographics. Only two

participants in the PopCAD/SnapCAD study had indicated previous experience with 3D modeling

in any capacity, and the study site was a drop-in program serving primarily disadvantaged youth

in a predominantly low socioeconomic neighborhood (indeed, one of the neighborhood schools was

scheduled to close permanently while we conducted our study). In contrast, the two earlier studies

with the UCube were performed at a fairly affluent, predominantly Caucasian middle school, with

students from a multimedia class, most of whom had been exposed to 3D modeling software (like

Google SketchUp[135]) as part of their classroom multimedia curriculum. Additionally, the UCube

follow-up study was skewed in gender more so than the other studies (eight boys to two girls)

and since boys tended to do better on modeling tasks, especially upon their first interactions - the

UCube studies only had one session - this gender balance may have played a role in the modeling
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performance we observed. Although these factors are merely speculative, the observed performance

(in the 80% range for the middle school subjects and less than 60% for our drop-in program), is

likely not all due to innate modeling ability, differences in shape complexity, or the use of the

UCube device specifically.

5.7 A Note On Other Uses

Thus far we have focused on our devices as a means of engaging novices in design for 3D

printing. However, that is not the only (or potentially even the best) use case for these instruments.

From a pedagogical perspective, it is easy to think of several areas to which devices like ours may be

well-suited. In mathematics instruction, the grid-like properties of the interfaces seem to be a very

“natural” way to introduce (for example) 2D and 3D coordinate systems, simple linear graphs, the

notions of slope, axes, and origin, geometric shapes (like a cube or a trefoil knot) and relations (like

perpendicularity or symmetry), and many more. In chemistry, molecules could be visualized using

the minimal spanning tree mode; in astronomy, constellations could be modeled. More literally, in

art, base components could be made for sculpture and scale models of bigger pieces; architecture

students could print out basic shapes for their building structures and scenes. The diversity of

use cases underscores how powerful these sorts of devices (even the simple ones) can be. In the

following chapter we discuss in more detail a few more ideas about what the future of embodied

fabrication devices might look like.



Chapter 6

Vision and Future Work

In this chapter we discuss a broader vision of embodied fabrication, expand on the ideas

presented so far, and present several possibilities for future developments in our own work and for

embodied fabrication more generally. Crucially, the work presented in the preceding chapters need

not be taken as representative of embodied fabrication devices in terms of design, functionality, or

purpose. The devices we created, while giving birth to this notion of embodied fabrication devices

only cover a small swatch of the potential landscape. To elucidate: we focused on novice designers

(we could have focused on experts or somewhere in between), we aimed our designs at middle-school

aged children (we could have aimed younger or older), we could have focused more on inclusive

design for those with physical and cognitive disabilities, we focused on 3-dimensional design with

3D printing as the fabrication output - one could have worked on ways to turn 2D designs into

3D-printable objects, or on flattening 3D files into slice forms suitable for a laser cutter, or on

embodied output for CNC machines, sewing machines and e-textiles, or even standard shop tools

for wood and metal. Some of these ideas are already close to reality, as mentioned in the chapter

on related work, and if current trends in desktop fabrication continue, we will no doubt see other

possibilities arise.

Even in terms of constructing tangible interfaces for novice 3D design, we have only scratched

the surface. Indeed, we rejected many other possible designs in choosing the physical format for

our devices; the UCube, SnapCAD, and PopCAD, while they may appear quite different (and

are in many ways) they all operate off of the same general paradigm: a set of vertical towers
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with actuators that communicate integer coordinates via LEDs that connect to a piece of software

which takes care of most of the visualization and modeling algorithms. Although we had some

success with this formula, it is far from the only one we considered (and of course there are many

potential designs we failed to think of). While working within the integer lattice on step-by-step,

very intentional interfaces provided some worthy advantages and a remarkable range of output

considering the restraints, one could have gone many other directions.

To provide a truncated list of the many ideas we had and suggestions we received: various

means by which to perturb the physical points off the integer lattice, through sliders, potentiome-

ters, force sensors, resistor networks, etc.; using some sort of lateral connection or visualization to

make horizontal connections more apparent, by electroluminescent wire, e-textile strips, or reflected

light; to forgo the hardware and use a 3D camera, 3D scanner, or mobile phone combined with

computer vision techniques to read in real-world objects, clay, or some other modeling material

instead of switch states from a device. We had our reasons for not implementing some of these (to

avoid blocking movement through the modeling space, the desire to maintain a tangible interface)

but that certainly does not mean that these ideas could be implemented very effectively in other

embodied fabrication devices. Indeed, several of the limitations of our devices, noted earlier, could

be resolved with some of these different approaches - modeling curves, complex shapes with many

input points, geometric shapes off the integer lattice - and undoubtedly others could think of even

more innovative interfaces in this area.

6.1 Short Term Improvements

From these myriad ideas, we move on to discuss some of the more direct future work that

could be done with our devices. Starting with SnapCAD, then: given the ability to relate different

colors, and thus represent multiple shapes or players, we have yet to really explore this area. We

envision not just a modeling apparatus, but a platform for 3D spatial interaction that goes well

beyond the “tic-tac-toe” and sample modeling game we discussed in chapter 2. Additions could

extend the number of players and colors to three, four, or five, we can implement new modeling
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modes or functions that take advantage of multiple shapes, such as taking the union, intersection,

or difference of two or more convex hulls. Additionally, the towers we designed originally do not

need to be the only “input objects” - one could imagine a number of different objects also being

able to slot in to the same interface, and depending on which object the software was expecting,

the software could change its behavior accordingly. One might imagine towers that provided sonic

feedback, and could take in and replay audio samples, creating a sort of 3D spatial sequencer. One

could outfit towers with different sensors such as reed switches (which detect magnetism) - thus

giving the SnapCAD the ability to graph a point cloud representing the strength of a particular

magnet placed in the middle (or anywhere near) the device.

As for PopCAD, given the different medium of the pop-up book (paper as opposed to circuit

boards), it is worth exploring the possibilities afforded by a cheaper, more flexible material. To

start with the obvious, our device could be expanded to include a larger array of input points

(5x5x5, say), we could potentially find a way using tiny magnets or magnetic paint to achieve a

similar “snap” effect as in SnapCAD, which would allow for the same kinds of multiple color/player

interactions discusses above. For instance, the flexibility of paper might provide the means for new

types of modeling actions. It is plausible to imagine paper tabs or other mechanisms that perturb

the LEDs off the integer lattice, or alter the overall topology in such a way that new shapes are

possible (e.g. by deforming an equidistant grid into a spherical shape). A deeper look into paper

engineering and origami may yield some surprisingly dynamic structures. These structures might

be amenable to additional sensors or hardware that could be embedded into the paper or the book

to provide new functionality (rotation, proximity, pressure). Additionally, due to the inexpensive

and portable nature of the PopCAD design, it is worth exploring the sorts of interactions that

could occur between several pop-up books (e.g., extending the input field to include two or more

grids by “snapping” several PopCADs together, networked interactions like cooperative modeling

tasks, or competitive games like 3D-battleship). By using paper as a material to think with, we

may find further possibilities as development continues. It is also worth looking at redefining or

expanding what “paper” means as a material and what kinds of things can work with it. Although
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not yet available, there are “circuit stickers” made from a very thin and flexible substrate and

designed specifically to be used with paper, copper tape, and the like. While various types of

“conductive paper” are available, they are mostly designed for custom scientific applications, and

lack the sort of “hackable” potential that a conductive paper for electronic paper-crafts would

ideally have. Given that paper can be made at home (or in a school lab or even classroom), it

seems likely that an electronics friendly recipe from the maker community before too long. If a

stencil-like method became available for finely separating conductive and non-conductive elements

while making a single sheet of paper, then we have truly arrived at paper-based circuit boards.

One can imagine a desktop 3D printer being able to lay down thin layers of pulp in conductive and

insulating varieties to build, in-situ, a 3D paper circuit.

Due to its inexpensive nature, the PopCAD makes a good candidate for a DIY kit, whereby

the design files for the paper elements, the schematics for the circuitry, and the harder-to-find

components (like the fabric tape, LEDs, and microcontroller) could all be packaged together and

sold under an open source license. As the democratization of technology is one of the goals of this

work, it seems fitting that an inexpensive, open-source kit be one of the results of our research.

Without including the paper, scissors, or soldering equipment, we estimate that the components

for a PopCAD kit would be roughly $6US for the LEDs, $20 for the conductive tape, and $30

for a microcontroller, for a total of roughly $60US with tac and shipping. $60 may still prevent

some educators from purchasing a device, but certainly not as many as a $500 device would.

With that in mind, we plan to redesign the PopCAD with a kit in mind - making the circuit

more straightforward and the construction more robust, while developing solid documentation and

instructions for distribution with the kit.

For the software, several less-fanciful or inspiring opportunities arise that would nonetheless

make significant improvements to the existing state of affairs. The current software is written in

Java, and as an application would have to manually installed on any computer that wished to

make use of it. Porting the software to JavaScript and making use of new developments in HTML5

that greatly enhance a modern web browser’s ability to display complex, interactive 3D graphics
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would allow the application to be accessed from anywhere. It has also become easier to connect

peripherals attached to a home computer to an application running in a web browser. There are

many different Ethernet shields available for Arduino, as well as the Arduino Yun, a single board

the combines an Arduino with a Linux-based operating system with WiFi and Ethernet support.

There is even a web-based integrated development environment (IDE) for writing and uploading

code onto an Arduino straight from a browser[8]. Combined, these methods would allow users all

over the world to run a local copy of the software, configure it for their own uses, and receive and

install the latest firmware versions of the Arduino code. There is one advantage of the software

currently being in Java, however - the Android mobile operating system uses Java, so a mobile

phone and tablet-based version of the software could be made available with a little work, allowing

those without a desktop or laptop computer (or those who wanted to take a PopCAD camping

with them) to still make use of our contributions.

Figure 6.1: Left: The Arduino Yun, an Arduino board with a Linux-based OS. Right: codeben-
der.cc, an open-source, web-based platform for writing and uploading code directly to an Arduino.

Additionally, we feel there is a fair amount still to explore in the video footage we captured

from the SnapCAD / PopCAD study. We recorded over 400 video clips of participant modeling and

40 hours worth of screen capture from the software during that time. We looked at modeling results

and the gesture and speech expressions made when answering a certain question about modeling,

yet there are many more things we could analyze given the time. For instance, recording and coding
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the gestures made during the modeling process; does gesturing while modeling correlate to modeling

success, or to gesturing while explaining modeling strategy? We could have done analysis on the

screen capture to see if subjects who interacted with the software more often were more likely to be

good modelers. We could look at the types of orientations the users put the software in and detect

any correlation between the amount of time spent in certain orientations versus modeling success.

These are questions we believe are worth exploring, however the time and resources available to us

have not allowed such a thorough analysis to be completed.

6.2 Extending Embodied Fabrication

As we alluded to at the beginning of the chapter, the work we have presented is but a minnow

among whales compared to the potential work on embodied fabrication research. We have given

some concrete instances of improvements or changes that could be made to our existing devices

and software, without indicating (however imperfectly) what might lay ahead for those interested

in embodied fabrication more generally.

The core ideas in our work deal with creating means of increasing accessibility to and un-

derstanding with emerging fabrication technology while maintaining a sense of authorship and

empowerment in the user, by leveraging the deep connections between body and mind. These

strands might be woven together in any number of different ways and with greater emphasis on

some aspects than others. By breaking down these elements we might think intelligently about

how focusing on one of these might play out in relation to the rest.

In focusing on accessibility, we might envision devices created to give a greater sense of 3D

modeling to those with severe vision impairments, perhaps with a combination of familiar materials

such as clay or play-doh and wearable haptic devices. We might think of ways to take input from

those with limited motor skills and transform it into potential output for 3D printers and laser

cutters - see for example the EyeWriter project[9] in which a group of technologists developed a

set of glasses for a former graffiti artist who had been diagnosed with ALS (Lou Gehrig’s disease)

and only had free movement with his eyes. The glasses would track eye movement and allow eye
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Figure 6.2: Left: The EyeWriter, a wearable eye-tracking system connected to a paint program
that allows users with ALS (or other forms of paralysis) to paint. Right: The OpenPCR, an
affordable, open-source polymerase chain reaction (PCR) machine that can be used at-home for
DNA replication, gene sequencing, and more.

movements to control a drawing program, allowing him to create artwork again. We can imagine

a similar set of devices for the creation of artifacts for 3D printing, laser cutting, sewing, or even

circuit design.

Another interesting thought comes from the DIY-biology movement, which has released (and

continues to work on) ways of creating affordable polymerase chain reaction (PCR) machines, used

for DNA replication, sequencing, and analysis. The OpenPCR[10] is a completely open-source PCR

machine currently available for $600 (a fraction of traditional lab versions, much like industrial 3D

printers). Imagine creating an embodied interface that teaches children how DNA replication and

gene sequencing works!

To summarize, while there are some concrete steps to take in our own work, the vision for

embodied fabrication devices, while incredibly exciting to think about, is far too open at this stage

to offer more than mere speculation. We can only hope that other engineers, designers, artists, and

scientists continue to work on objects and technologies that spur others to create ways of connecting

their inventions to people in ways that inspire, empower, and enlighten.



99

6.3 Closing Remarks

During the four years since beginning work on the first UCube prototype, our thoughts and

beliefs about the nature of our work evolved, became steadily more focused and resulted in the work

we present here on devices for embodied fabrication. Over the course of designing three devices

and three user studies, we gained valuable insight into how young people think about 3D modeling,

how they interact with never-before-seen tangible devices, the kinds of models they create, and the

strategies they use (both verbal and gestural) to explain their modeling decisions. This chapter is

devoted to “taking a look back” at the body of work that comprises this thesis and attempting to

distill the most relevant and unique findings into their most basic parts.

We have created three separate, fully-functional prototype devices, the UCube, SnapCAD,

and PopCAD, each of which interfaces with a piece of software (again, that we created) that allows

one to specify points in 3-space in various ways to create 3-dimensional solids that can be easily

exported into a 3D printable format. We are aware of no other systems that combine the physical,

embodied nature of our designs with the express purpose of making design for 3D printing accessible

to novice designers as young as 11 years old.

We performed three separate user studies with over 50 hours of subject interaction with our

devices and over 40 different subjects, aged between 11-18 years old. Our first two studies showed

that the UCube can be used to reproduce convex hull models both from on-screen representations

and from 3D printed physical models. We also ran a matching task that strongly indicated that

children have the ability to mentally reconstruct and accurate convex hull from a set of lighted

points in 3-space. Our last study, a two-stage evaluation of the PopCAD and SnapCAD, looked

not only at convex hull performance, but at path and minimal spanning tree modeling as well.

Additionally, we had subjects do a mental transformation exercise before and after the study to

assess spatial reasoning skills. We analyzed video recordings and coded the speech and gesture

expressions produced when participants were asked about their modeling strategy. We observed

improvements in each of the three modeling modes, improvements in the mental transformation
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task scores, and an increase in speech and gesture expressions from the first to second sessions. Most

encouraging was the dramatic improvement we observed from girls over the course of the study. We

found correlations between the types of gesture and speech produced and overall modeling ability,

and based on prior research, we concluded that subjects who exhibit a high number of gestures

that are classified as most relevant to the task at hand are in fact the most likely to perform well on

that given task. Interestingly, we found only a modest correlation between age and performance,

while an analysis of performance against shape complexity found a more significant correlation.

Perhaps most importantly, children were deeply engaged by the devices. They took advantage

of an open modeling session to create a wildly diverse set of objects, many taking longer than the

allotted time just to explore the possibilities of the interface. This is crucial given the fact that

the subjects in all three studies were given very minimal instruction on how to use the device,

and no instruction on how to think about the relationships between the physical device and the

software. The ability of the devices to engage youngsters in exploratory play will allow them to

come to their own conclusions about how to operate the interfaces most effectively, and will no

doubt lead to unforeseen adaptations and use-cases. The engagement we witnessed indicates to us

that an interface such as the ones we have devised would likely be a welcome addition to many

educational spaces, and even some homes (many kids we worked with said they “wanted one”). Is

it our hope that this work will continue on in such a way as to fulfill these children’s wishes, with

the creation of ever-more engaging, expressive, and diverse tools that combine thinking with the

mind and acting with the body to bring a deeper level of understanding and learning to the full

breadth of human experience.
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Conference Posters and Visualizations

Figure A.1: The poster used at the presentation of the UCube at the Denver Art Museum.
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With the rise of the ‘maker movement’ and accessible digital fabrication, 3D printing in 
particular is being rapidly integrated into classrooms, after school clubs, and hacker-
spaces. As children are being exposed to 3D printing earlier and earlier, it behooves us 
as researchers and educators to critically examine ways to effectively engage children in 
using these devices. This poster reflects on the history of tangible interfaces and cogni-
tive science to frame a promising avenue of research around ‘embodied fabrication’ de-
vices that offer a body-centric approach to 3D printing and digital fabrication in general. 
Embodied fabrication takes the core tenets of embodied cognition and their manifesta-
tion in recently successful tangibles-based kits for learning to argue for the development 
of tangible input devices designed for digital fabrication. We take a look at current meth-
ods of engaging children in 3D printing, compare them to several recent developments 
in tangible and embodied interfaces, a take a critical look at potential new directions for 
research in digital fabrication with children.

FROEBEL TO PAPERT

EMBODIED DEVICES

Many of the influences apparent in the ‘maker’ movement of today and subsequently on 
the current research around embodied fabrication devices, have their genesis centuries 
ago. Friedrich Froebel, the creator of the first kindergarten in 1837, included a set of 
wooden ‘gifts’ meant to foster connections between “universal aspects of the external 
world, suited to a child's development”. Froebel's works inspired those interested in child-
hood education including Maria Montessori, who refined ideas about exposing children 
to ‘manipulatives’ The influence of Froebel and Montessori (amongst others) set the 
stage for Jean Piaget’s work with childhood development. While Piaget’s theories have 
been challenged, one of Piaget's intellectual descendants, Seymour Papert, has been 
hugely influential in connecting theories of children’s learning with tangible, computa-
tional devices. The creation of the Logo turtle, and the theories of learning presented in 
Mindstorms opened the door and gave researchers a framework in constructivism with 
which to transform the intentions of Froebel and Montessori into computationally-
enriched manipulatives.

There have been several recent attempts at designing interfaces 
to enable novice 3D modeling and 3D-printing through tangible 
interfaces. In KidCAD and deForm, an IR camera system pointed 
at a deformable surface can read the deformations and stitch 
together a coherent 3D model. This ability of stamping pre-made 
objects allows young children to generate complex designs by 
combining several pre-made objects together and to add details 
by hand, pencil, or brush. As of writing, the ability to natively 3D 
print the created shapes in still a work in progress. VizTouch auto-
matically generates a 3D-printable file of a variety of mathematical 
formulae by extracting relevant information from an excel file. 
Printing mathematics concepts (e.g. a graph of a polynomial func-
tion) may foster greater understanding among many kinds of stu-
dents.

The Easy Make Oven is an interactive tabletop that allows users to 
scan real objects, perform simple gestural manipulations on a 
scanned model, and export the altered shape to a 3D printer. By 
allowing the scanning of real-world objects and gestural modeling 
actions as opposed to creating a digital model from scratch using 
sophisticated CAD tools, the Easy Make Oven lowers the barrier 
to entry for creative and embodied 3D modeling in an accessible, 
child-friendly way. The UCube is a tangible user interface that 
facilitates the modeling of basic classes of shapes on a grid-like 
platform. Users place vertical towers in certain (x,y) positions on 
the board and then flip switches to specify a particular coordinate 
in 3D. The tangible board connects to a piece of software that dis-
plays the active points in real-time against a ‘ghosted’ grid of all 
the potential points in the grid (e.g. a 4x4x4 grid has a potential 64 
points). The software can then interpret these points in different 
ways, for example by taking the convex hull of the active set. 
These models can also be directly exported into a 3D printable file 
format. Easigami is a tangible user interface that, like Posey, 
allows users to connect a set of shapes and have software recog-
nize the morphology of the model. The paradigm of origami folding 
is incorporated into the shapes via the hinge-like mechanisms that 
serve to attach two pieces together and allow the two faces to be 
posed at different angles to each other so that, for instance, one 
could use eight equilateral triangles to form an octahedron. Going 
through the process of manipulating physical triangles (vs.digital 
ones) we may argue that the user gains a deeper understanding of 
certain geometric concepts. A real-time screen representation is 
shown on a computer, potentially allowing users to gain insight into 
how 3D shapes are typically represented on a 2D screen. Easi-
gami also allows the option of saving a model to a 3D printable 
format. 
 
With the rise of digital fabrication and especially 3D printing, 
researchers and educators ought to take a more embodied ap-
proach when designing fabrication tools for kids. Traditional child 
friendly software-only solutions promote a ‘download and print’ 
mentality that robs children of exploring the deeper concepts em-
bedded in 3D printing. Given the potential of this relatively unex-
plored field, it is our hope that more practitioners begin to think of 
digital fabrication with children as being an opportunity to employ 
tenets of embodied design as a means of deeper discovery and 
engagement.

Figure A.2: The poster presented at the 2013 FabLearn conference at Stanford University, in
support of a short paper by the same name[88].



Appendix B

Selected Transcriptions

This appendix contains several illustrative transcriptions from the third user study with the

PopCAD and SnapCAD, where we recorded the speech and gesture expressions of users explaining

their modeling strategy. These excerpts contain quotes from users generated while explaining

their modeling strategy for a given shape, the observed gestures that occurred during the spoken

explanation, and the speech and gesture codes generated from those expressions. A reminder of

the codes and examples used are provided in Table B.1.

Excerpt 1

“It goes upward, downward, over, up,across, over downward, over, and doesn’t
go up again.”

Gesture: (Pointing along sides of the shape)

Codes: S.M, G.PF

- User3, Shape P2, Session 1

Excerpt 2

“I saw that is was a series of L shapes. . . I just thought that if I could make a
series of L, I could soon make it.”

Gesture: (rotating model in hand repeatedly)

Codes: S.PW, S.PF, G.V
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Table B.1: The various coding strategies used in the video analysis of subjects’ modeling strategy
explanations. Borrowed and adapted from [41].

Category Definition Speech Examples Gesture Examples
Movement Any indication of move-

ment
“Just slide them together
and then it looks like that”
(S.M)

Miming movement with the
hands (G.M)

Perceptual
Features

Focus on a particular fea-
ture of the model

“Because there is a little
bend in here and a point
thing here” (S.PF)

Pointing to a specific fea-
ture on the model (G.PF)

Perceptual
Whole

Any indication of seeing the
model as a whole

“It looks like an arrow!”
(S.PW)

Gesture indicating inclu-
sion of the whole shape
(G.PW)

Vague An expression of strategy
that the coder cannot deci-
pher

“Because I looked at that
and I looked at the differ-
ences” (S.V)

Waving gestures above the
computer device that do
not indicate any specific
strategy (G.V)

Other Any strategy not listed
above

“And here is like half of it.
But so and two halves make
a whole” (S.O)

Using the hand to form a
straight line through the
middle of the whole shape
to represent the line of sym-
metry (G.O)

- User 4, Shape P2, Session 1

Excerpt 3

“Well it’s based on the points, so the shape has 6 points, so needed 5 towers
for the 6 points. . . because of how to works you get one point there, you go down,
then another point, then you go over, on the same kind of layer. . . and then in the
middle, so you don’t just have a flat square, and you’re pulling it up, you get two
points, so it is pulling the whole thing.”

Gesture: (pulls “up” with hands, points to towers, makes flat hand for layers)

Codes: S.PW, S.PF, S.M, S.O, G.PF, G.O, G.M

- User 11, Shape CH1, Session 1

Excerpt 4

“Because the lines are the same way, as, the, uh, that shape.”
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Gesture: (shrugs)

Codes: S.V, G.V

- User 8, Shape P2, Session 1

Excerpt 5

“By taking each point, each side, and creating it into a point on the graph” ”on
this shape, uh, this is about, uh 3 points wide, and 2 points tall, like, on this, and
then also, like 2 points out.”

Gesture: (at ‘like this’ points to two lights on the device one after the other.)

Codes: S.O, S.PF, G.PF

- User 7, Shape T2, Session 1

Excerpt 6

“If it was hull then I knew it would automatically connect and fill in between
the points, so all I really needed to do was make two triangles, and it would fill in
the rest”

Gesture: (gestures with hands to indicate two parts moving together)

Codes: S.O, S.PF, G.M, G.PF

- User 11, Shape CH1, Session 2

Excerpt 7

“Because, it didn’t look like a pyramid, but like a right pyramid. . . like a right
angle, one side is a right. . . I put four there, in each corner. . . I put one on top
because it was the point, a vertex. . . and then I looked at the laptop and it looked
like the shape.”

Gesture: (points to different corners of the shape)

Codes: S.PW, S.PF, S.O, G.PF, G.V
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- User 17, Shape CH4, Session 2

Excerpt 8

“When I was trying to make this part, I was trying to make it small, from the
middle. . . I made it look like it’s supposed to look, I made it down, straight, up,
right, down, straight, up. . . so I try to just mimic the shape and see how it works.”

Gesture: (gestures along the path on the device that the user is describing)

Codes: S.PF, S.PW, S.M, G.M, G.PF

- User 1, Shape T3, Session 2

Excerpt 9

“There’s two U’s, and um, like an entrance to a doorway.”

Gesture: (traces with finger along different parts of the shape)

Codes: S.PF, S.O, G.PF

- User 5, Shape T3, Session 1

Excerpt 10

“Basically drawing it out with my mind.”

Gesture: (makes drawing motion with hand, then a sort of vague waving motion)

Codes: S.O, S.V, G.M, G.V

- User 2, Shape P3, Session 2


